Decomposing a Transformation Matrix
26 views (last 30 days)
Show older comments
Hi!
I have been trying to look for a function that will "undo" a transformation matrix.
I saw in Matlab that there's a function "makehgtform" to create a transformation matrix. Now, I'm looking for something that is the exact opposite of this.
Example:
M = makehgtform('xrotate',30*pi/180);
It would result to a 4x4 matrix. But I want to actually extract the X, Y, Z translation and X,Y,Z rotation.
Can anyone help me or just give me an idea? I would really appreciate it! :(
Thanks in advance!
0 Comments
Accepted Answer
Matt J
on 28 Nov 2018
Edited: Matt J
on 28 Nov 2018
Here's an example that makes use of the attached file for rotation matrix decomposition.
>> M = makehgtform('translate',[1,2,3],'xrotate',30*pi/180)
M =
1.0000 0 0 1.0000
0 0.8660 -0.5000 2.0000
0 0.5000 0.8660 3.0000
0 0 0 1.0000
>> translation=M(1:3,end)
translation =
1
2
3
>> rotation=rot2taitbryan(M(1:3,1:3),'xyz'), %see attached file
rotation =
30.0000 0 0
9 Comments
Matt J
on 28 Nov 2018
Edited: Matt J
on 28 Nov 2018
I guess I don't fully grasp what atan2 is
Even after googling? https://en.wikipedia.org/wiki/Atan2
More Answers (1)
Bruno Luong
on 28 Nov 2018
Translation vector is T(1:3,4);
Rotation matrix is T(1:3,1:3).
If you want to decompose in rotation on axis, there are many conventions (intrinsic, extrinsic, Euler's angle, Tait–Bryan angles, etc...) see https://en.wikipedia.org/wiki/Euler_angles and pick your choice.
0 Comments
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!