I have a question on usage for fft to get fourier series back.
1 view (last 30 days)
Show older comments
My problem is
f = 1 + 2*sin(2.*pi*t/L) + 3.*sin(4*pi*t/L);
L = 1,
and I am dividing the peiod to 100 steps. Here is the program I use
L = 1;
Nsamples = 100;
t = linspace(0,L,Nsamples);
f = 1 + 2*sin(2.*pi*t/L)+ 3*sin(4*pi*t/L);
FF = fft(f);
NHarmonics = 3;
FFMag = abs(FF(1:NHarmonics))/Nsamples;
FFAngle = angle(FF(1:NHarmonics))*180/pi;
I expected FFMag to be 1, 2 and 3 the first three coefficients (a0, a1, and a2 of fourier series)
However, I am getting 1, 1, and 1.5 as the coefficients. they are half of the values of a1 and a2. a0 is correctly computed. I am sure i made a dumb error here but I can't figure it out. Please help and thanks in advance.
0 Comments
Accepted Answer
dpb
on 22 Sep 2018
Edited: dpb
on 22 Sep 2018
FFT returns the two-sided DFT so half the energy is in each of +ive and -ive frequencies. However, there is only one DC component so, therefore the a0 magnitude is as expected and a1, a2 are half.
...
FFMag = abs(FF(1:NHarmonics))/Nsamples;
FFMag(2:end)=2*FFMag(2:end); % magnitude for 1-sided transform
More Answers (0)
See Also
Categories
Find more on Fourier Analysis and Filtering in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!