represent differencital equation with ode45
    4 views (last 30 days)
  
       Show older comments
    
    jose luis guillan suarez
      
 on 20 May 2018
  
i got this differential equation:
function xdot=tresorden(t,x)
xdot=zeros(3,1);
Vp=5;
Vi=Vp*square(2*pi*t)+5;
xdot(1)=x(2);
xdot(2)=x(3);
xdot(3)=6*Vi-6*x(1)-11*x(2)-6*x(3);
xdot=[xdot(1);xdot(2);xdot(3)];
how can i represent x(1)?
2 Comments
  Anderson Francisco Silva
 on 29 Aug 2020
				And if he wanted to use the last vector, to be entered in another function he could do it like this? :
xdot(3)=6*Vi-6*x(1)-11*x(2)-6*x(3);
x_dot=[xdot(1);xdot(2);xdot(3)]; (I chance the name of vector, for no replaces xdot)
Accepted Answer
More Answers (3)
  Jan
      
      
 on 20 May 2018
        
      Edited: Jan
      
      
 on 29 May 2018
  
      This integrates the function from the start point x=[1,2,3] over the time 0 to 7:
[EDITED - bug concerning t.' fixed]
function main
[t, x] = ode45(@tresorden, [0, 7], [1,2,3]);
plot(t, x(:, 1));
xdot = tresorden(t.', x.').';
end
function xdot = tresorden(t, x)
Vp = 5;
Vi = Vp * (2*pi*t)^2 + 5;  % Or what is square() ?
xdot = [x(2, :); ...
        x(3, :); ...
        6 * Vi - 6 * x(1, :) - 11 * x(2, :) - 6 * x(3, :)];
end
Note: Due to square you are integrating a non-smooth system. This causes numerical instabilities. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047.
0 Comments
  jose luis guillan suarez
      
 on 21 May 2018
        1 Comment
  Jan
      
      
 on 21 May 2018
				Sure? I'd expect:
xdot(1) = x(2);
xdot(2) = x(3);
xdot(3) = Vi - 6*x(3) - 11*x(2) - 6*x(1);
if you convert the 3rd order equation to a system of 1st order.
But even then: ODE45 is used to solve initial value problems numerically. If you want the values of x(1), you need to run the integration from an initial value.
Please do not post parts of the question in the section for answer. And explain, what "represent differencital equation with ode45" means exactly.
  jose luis guillan suarez
      
 on 22 May 2018
        
      Edited: jose luis guillan suarez
      
 on 22 May 2018
  
      11 Comments
  Jan
      
      
 on 27 May 2018
				@jose: You have posted and removed another equation formerly. The solution of how to get the 3rd derivative has been given repeatedly and it even occurs in the original question.
Currently my best assumption is that your "numerical checking" contains a mistake.
 i checked numerically and the [...] it's not the 3rd derivative.
My best assumption is that your "numerical check" contains a mistake.
After 6 days it could not be clarified, what the actual question is or why the obvious and already posted solution does not satisfy you. Therefore I will leave this thread now.
See Also
Categories
				Find more on General Applications in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!












