What does the training accuracy plot of my convolution neural network (CNN) show?
2 views (last 30 days)
Show older comments
Hello everybody
the result of my CNN is shown in the picture attached. I'm wondering about the accuracy why it goes down and up during the training? is it normal or it should grow gradually? and what is the possible error that may I have on my net (or parameters)!! Additionally, whatever I change the training options; the test accuracy does not exceed 42% !!!
if true
Training on single CPU.
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 6.67 | 1.6277 | 0.00% | 1.00e-04 |
| 1 | 20 | 128.30 | 1.6677 | 25.00% | 1.00e-04 |
| 1 | 40 | 253.77 | 1.6505 | 50.00% | 1.00e-04 |
| 1 | 60 | 381.41 | 0.9331 | 87.50% | 1.00e-04 |
| 1 | 80 | 505.31 | 1.0754 | 25.00% | 1.00e-04 |
| 2 | 100 | 629.83 | 1.6579 | 12.50% | 1.00e-04 |
| 2 | 120 | 758.84 | 1.3724 | 62.50% | 1.00e-04 |
| 2 | 140 | 884.09 | 1.1539 | 50.00% | 1.00e-04 |
| 2 | 160 | 1028.53 | 1.1311 | 37.50% | 1.00e-04 |
| 2 | 180 | 1154.14 | 1.4353 | 37.50% | 1.00e-04 |
| 3 | 200 | 1277.55 | 0.9360 | 50.00% | 1.00e-04 |
| 3 | 220 | 1401.44 | 0.9559 | 50.00% | 1.00e-04 |
| 3 | 240 | 1525.49 | 1.6097 | 25.00% | 1.00e-04 |
| 3 | 260 | 1649.96 | 0.9116 | 62.50% | 1.00e-04 |
| 3 | 280 | 1774.19 | 1.0897 | 37.50% | 1.00e-04 |
| 4 | 300 | 1898.34 | 1.4818 | 12.50% | 1.00e-04 |
| 4 | 320 | 2022.42 | 1.1853 | 50.00% | 1.00e-04 |
| 4 | 340 | 2146.87 | 0.9665 | 62.50% | 1.00e-04 |
| 4 | 360 | 2272.24 | 1.1143 | 37.50% | 1.00e-04 |
| 4 | 380 | 2396.43 | 1.1264 | 37.50% | 1.00e-04 |
| 5 | 400 | 2522.21 | 1.5471 | 50.00% | 1.00e-04 |
| 5 | 420 | 2646.45 | 1.3815 | 50.00% | 1.00e-04 |
| 5 | 440 | 2776.98 | 0.7213 | 87.50% | 1.00e-04 |
| 5 | 460 | 2906.50 | 0.8455 | 87.50% | 1.00e-04 |
| 6 | 480 | 3033.40 | 1.7557 | 12.50% | 1.00e-04 |
| 6 | 500 | 3159.12 | 1.1510 | 50.00% | 1.00e-04 |
| 6 | 520 | 3290.33 | 1.0716 | 62.50% | 1.00e-04 |
| 6 | 540 | 3419.24 | 1.2187 | 37.50% | 1.00e-04 |
| 6 | 560 | 3545.82 | 1.3443 | 37.50% | 1.00e-04 |
| 7 | 580 | 3671.92 | 0.9136 | 50.00% | 1.00e-04 |
| 7 | 600 | 3796.45 | 0.8985 | 62.50% | 1.00e-04 |
| 7 | 620 | 3920.45 | 1.4416 | 37.50% | 1.00e-04 |
| 7 | 640 | 4051.54 | 0.9950 | 75.00% | 1.00e-04 |
| 7 | 660 | 4191.68 | 0.8132 | 75.00% | 1.00e-04 |
| 8 | 680 | 4328.36 | 1.3569 | 25.00% | 1.00e-04 |
| 8 | 700 | 4463.55 | 1.1009 | 50.00% | 1.00e-04 |
| 8 | 720 | 4593.56 | 1.0073 | 62.50% | 1.00e-04 |
| 8 | 740 | 4718.89 | 1.0589 | 50.00% | 1.00e-04 |
| 8 | 760 | 4843.50 | 0.9829 | 50.00% | 1.00e-04 |
| 9 | 780 | 4965.23 | 1.2858 | 62.50% | 1.00e-04 |
| 9 | 800 | 5086.95 | 1.4522 | 50.00% | 1.00e-04 |
| 9 | 820 | 5207.89 | 0.4955 | 100.00% | 1.00e-04 |
| 9 | 840 | 5328.95 | 0.7283 | 100.00% | 1.00e-04 |
| 10 | 860 | 5450.18 | 1.6487 | 37.50% | 1.00e-04 |
| 10 | 880 | 5570.79 | 0.8402 | 75.00% | 1.00e-04 |
| 10 | 900 | 5692.05 | 0.8969 | 62.50% | 1.00e-04 |
| 10 | 920 | 5812.29 | 1.1199 | 37.50% | 1.00e-04 |
| 10 | 940 | 5932.70 | 1.0859 | 50.00% | 1.00e-04 |
| 11 | 960 | 6053.34 | 0.7106 | 62.50% | 1.00e-04 |
| 11 | 980 | 6173.80 | 0.8470 | 50.00% | 1.00e-04 |
| 11 | 1000 | 6295.36 | 1.3543 | 25.00% | 1.00e-04 |
| 11 | 1020 | 6415.40 | 1.0594 | 50.00% | 1.00e-04 |
| 11 | 1040 | 6537.31 | 0.4968 | 75.00% | 1.00e-04 |
| 12 | 1060 | 6659.25 | 1.0452 | 50.00% | 1.00e-04 |
| 12 | 1080 | 6780.46 | 0.8746 | 62.50% | 1.00e-04 |
| 12 | 1100 | 6900.97 | 1.1169 | 50.00% | 1.00e-04 |
| 12 | 1120 | 7022.03 | 0.9600 | 50.00% | 1.00e-04 |
| 12 | 1140 | 7144.63 | 0.8063 | 50.00% | 1.00e-04 |
| 13 | 1160 | 7266.01 | 1.0481 | 75.00% | 1.00e-04 |
| 13 | 1180 | 7385.75 | 1.3504 | 50.00% | 1.00e-04 |
| 13 | 1200 | 7505.62 | 0.3157 | 100.00% | 1.00e-04 |
| 13 | 1220 | 7627.16 | 0.6529 | 87.50% | 1.00e-04 |
| 14 | 1240 | 7749.26 | 1.1844 | 62.50% | 1.00e-04 |
| 14 | 1260 | 7874.78 | 0.6447 | 75.00% | 1.00e-04 |
| 14 | 1280 | 7994.68 | 0.7824 | 62.50% | 1.00e-04 |
| 14 | 1300 | 8114.98 | 0.9300 | 62.50% | 1.00e-04 |
| 14 | 1320 | 8237.20 | 0.8984 | 62.50% | 1.00e-04 |
| 15 | 1340 | 8359.44 | 0.4070 | 75.00% | 1.00e-04 |
| 15 | 1360 | 8481.32 | 1.0424 | 62.50% | 1.00e-04 |
| 15 | 1380 | 8601.45 | 0.8956 | 50.00% | 1.00e-04 |
| 15 | 1400 | 8722.41 | 0.9647 | 62.50% | 1.00e-04 |
| 15 | 1420 | 8844.57 | 0.2415 | 100.00% | 1.00e-04 |
| 15 | 1425 | 8874.94 | 0.6794 | 62.50% | 1.00e-04 |
|=========================================================================================|
accuracy =
0.3787
end
0 Comments
Answers (0)
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!