Genetic Algorithm: Failure in initial user-supplied fitness function evaluation. GA cannot continue.
8 views (last 30 days)
Show older comments
Nicolas
on 10 Nov 2017
Commented: VIGNESH KUMAR R C
on 5 May 2023
Hello everyone !
I'm currently trying to use a genetic algorithm for a simple problem, but it fails and I don't know why. This is my first time using a genetic algorithm function.
I have a function AlgoGen with 3 variables:
[Sol] = AlgoGen(alpha,beta,gamma).
That I can calculate if I try several inputs, so this function works. But when I'm trying to use:
SOL = ga(@(x) AlgoGen(x),3,[],[],[],[],[1 2.25*10^-2 1],[5 15*10^-2 5])
This is the error message I get:
Not enough input arguments.
Error in AlgoGen (line 5)
length=[1 0.75 1 1 alpha gamma]*10^-2;
Error in @(x)AlgoGen(x)
Error in createAnonymousFcn>@(x)fcn(x,FcnArgs{:}) (line 11)
fcn_handle = @(x) fcn(x,FcnArgs{:});
Error in makeState (line 47)
firstMemberScore = FitnessFcn(state.Population(initScoreProvided+1,:));
Error in galincon (line 17)
state = makeState(GenomeLength,FitnessFcn,Iterate,output.problemtype,options);
Error in ga (line 374)
[x,fval,exitFlag,output,population,scores] = galincon(FitnessFcn,nvars, ...
Caused by:
Failure in initial user-supplied fitness function evaluation. GA cannot continue.
Anyone can help me ? Thank you.
1 Comment
VIGNESH KUMAR R C
on 5 May 2023
This is my Cost Function definition:
function f = costFn(i_d, i_q)
L_d = 100e-6;
L_q = 500e-6;
lambda_f = 0.01;
P = 6;
T_e = 2.5;
f = (T_e - (3/2)*(P/2)*(lambda_f.*i_q + (L_d-L_q).*i_d.*i_q)).^2;
end
This is how I am trying to implement ga:
clc;
clear;
type costFn
fun = @(i_d, i_q)(costFn(i_d, i_q));
fsurf(fun, [-50 50 -50 50])
colormap 'parula'
xlabel('i_d')
ylabel('i_q')
sol = ga(fun,2);
I am getting same error as above. Kindly help me out.
Accepted Answer
Star Strider
on 10 Nov 2017
You need to supply a function with a single vector argument to ga.
This should work:
SOL = ga(@(x) AlgoGen(x(1),x(2),x(3)),3,[],[],[],[],[1 2.25*10^-2 1],[5 15*10^-2 5])
Here, ‘x(1)=alpha’, ‘x(2)=beta’ and ‘x(3)=gamma’.
No other changes to your code should be necessary.
2 Comments
Star Strider
on 10 Nov 2017
As always, my pleasure!
If my Answer helped you solve your problem, please Accept it!
More Answers (0)
See Also
Categories
Find more on Genetic Algorithm in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!