I want a whole code for solving the Blasius equation(similarity variable 'eta') using shooting method with Runge Kutta 4th order numerical technique

9 views (last 30 days)
I tried to write a brief code for the Blasius equation but I am unable to proceed further, it will be helpful if improvements are done in the code that I have written
% f'''+1/2*f*f''=0
% converting to 3 1st order odes
% f'=G
% G'=H= f''
% H'= -1/2*f*H = f'''
clc;
close all;
h=0.01; % step size
F1=@(eta,f,G,H) G;
F2=@(eta,f,G,H) H;
F3=@(eta,f,G,H) -1/2*f*H;
%initial conditions
eta(1)=0;
f(1)=0;
G(1)=0;
%initial guess
H(1)= 0.332;
N=10/h; % eta ranges from 0 to 10
for i=1:N
eta(i+1)= eta(i)+h;
k1= F1(f(i), G(i), H(i), eta(i));
l1= F2(f(i), G(i), H(i), eta(i));
m1= F3(f(i), G(i), H(i), eta(i));
k2= F1(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
l2= F2(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
m2= F3(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
k3= F1(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
l3= F2(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
m3= F3(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
k4= F1(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
l4= F2(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
m4= F3(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
f(i+1)= f(i)+ h/6*(k1+2*(k2+k3)+k4);
G(i+1)= G(i)+ h/6*(l1+2*(l2+l3)+l4);
H(i+1)= H(i)+ h/6*(m1+2*(m2+m3)+m4);
end
plot(eta,f,'r')
hold on
plot(eta,G,'b')
hold on
plot(eta,H,'g')
  3 Comments

Sign in to comment.

Accepted Answer

Sijie Huang
Sijie Huang on 7 May 2018
please refer to the following thread Blaisus Equation Solution

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!