Getting error message when running Runge Kutta solution...
5 views (last 30 days)
Show older comments
The code that produces the errors is below:
clc;
mass = 13.5;
Jx = 0.8244;
Jy = 1.135;
Jz = 1.759;
Jxz = 0.1204;
G = Jx*Jz-Jxz^2;
G1 = Jxz*(Jx - Jy + Jz)/G;
G2 = (Jz*(Jz-Jy)+Jxz^2)/G;
G3 = Jz/G;
G4 = Jxz/G;
G5 = (Jz-Jx)/Jy;
G6 = Jxz/Jy;
G7 = ((Jx-Jy)*Jx +Jxz^2)/G;
G8 = (Jx/G);
p = 0;
q = 0;
r = 0;
l = 0.0000;
m = 0.0000;
n = 0.0000;
tspan = [0 10];
%[t,q] = ode45(@(t,q) (G5*p*r-G6*(p^2-r^2)+m/Jy), tspan,0);
%plot(t,q);
%pdot = (G1*p*q-G2*q*r + G3*l+G4*n);
[t,p]=ode45(@(t,p) (G1*p*q - G2*q*r + G3*l + G4*n),[0 10], 0.1);
plot(t,p,'--r');
disp(p);
disp(t);
[t,q] = ode45(@(t,r) (G5*p*r - G6*p*p - G6*r*r + m/Jy), [0 10],0);
plot(t,q,'--g');
[t,r] = ode45(@(t,r) (G7*p*q - G1*q*r + G4*l + G8*n), [0 10],0);
plot(t,r,'--b')
The output with the error messages follows:
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0
0.2500
0.5000
0.7500
1.0000
1.2500
1.5000
1.7500
2.0000
2.2500
2.5000
2.7500
3.0000
3.2500
3.5000
3.7500
4.0000
4.2500
4.5000
4.7500
5.0000
5.2500
5.5000
5.7500
6.0000
6.2500
6.5000
6.7500
7.0000
7.2500
7.5000
7.7500
8.0000
8.2500
8.5000
8.7500
9.0000
9.2500
9.5000
9.7500
10.0000
Error using *
Incorrect dimensions for matrix multiplication. Check that the number of columns in the first matrix matches the number of rows in the second matrix. To
perform elementwise multiplication, use '.*'.
Error in test>@(t,r)(G5*p*r-G6*p*p-G6*r*r+m/Jy) (line 30)
[t,q] = ode45(@(t,r) (G5*p*r - G6*p*p - G6*r*r + m/Jy), [0 10],0);
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in test (line 30)
[t,q] = ode45(@(t,r) (G5*p*r - G6*p*p - G6*r*r + m/Jy), [0 10],0);
0 Comments
Answers (1)
Star Strider
on 22 Aug 2024
I’m not certain what you’re modeling. First, using norm to return a scalar solves the first problem of the differential equaton returning a (41x1) vector, however in the expression after that, ‘p’ is (41x1) and ‘q’ is (49x1). You will have to figure out what you want to do with them, and where the error is.
clc;
mass = 13.5;
Jx = 0.8244;
Jy = 1.135;
Jz = 1.759;
Jxz = 0.1204;
G = Jx*Jz-Jxz^2;
G1 = Jxz*(Jx - Jy + Jz)/G;
G2 = (Jz*(Jz-Jy)+Jxz^2)/G;
G3 = Jz/G;
G4 = Jxz/G;
G5 = (Jz-Jx)/Jy;
G6 = Jxz/Jy;
G7 = ((Jx-Jy)*Jx +Jxz^2)/G;
G8 = (Jx/G);
p = 0;
q = 0;
r = 0;
l = 0.0000;
m = 0.0000;
n = 0.0000;
tspan = [0 10];
%[t,q] = ode45(@(t,q) (G5*p*r-G6*(p^2-r^2)+m/Jy), tspan,0);
%plot(t,q);
%pdot = (G1*p*q-G2*q*r + G3*l+G4*n);
[t,p]=ode45(@(t,p) (G1.*p.*q - G2.*q.*r + G3.*l + G4.*n),[0 10], 0.1);
plot(t,p,'--r');
disp(p);
disp(t);
[t,q] = ode45(@(t,r) norm(G5.*p.*r - G6.*p.*p - G6.*r.*r + m./Jy), [0 10],0);
plot(t,q,'--g');
G7
p
q
G7.*p.*q
G1.*q.*r
G4.*l
G8.*n
de(t,r)
[t,r] = ode45(@(t,r) (G7.*p.*q - G1.*q.*r + G4.*l + G8.*n), [0 10],0);
plot(t,r,'--b')
.
0 Comments
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!