How can I plot the complete two circles vertical not horizontal ?

2 views (last 30 days)
clc
A =[ -1.
0.
0.
0.
0.
0.
0.
0.
0.
-1.
1.
-1.
1.
-1.
2.
-2.
3.
-3.
4.
-5.
5.
-7.
8.
-10.
12.
-16.
20.
-34.
53.
-30.];
B=[ 3262.
131.
-375.
563.
-639.
602.
-486.
345.
-218.
124.
-64.
31.
-13.
5.
-2.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
C=[ 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
AA=[ 8.
0.
1.
-1.
3.
-8.
21.
-52.
126.
-307.
738.
-1771.
4215.
-10047.
23743.
-56327.
132493.
-313806.
736630.
-1749066.
4111518.
-9852368.
23316548.
-57140296.
137506208.
-357384160.
896199040.
-3046175232.
9340706816.
-10404635648.];
BB=[ -76625208.
858156.
-3341452.
4741591.
-7006134.
8310705.
-9026788.
8857093.
-7988619.
6701862.
-5230164.
3847242.
-2655485.
1743048.
-1080089.
641116.
-360810.
195865.
-101116.
50743.
-24261.
11394.
-5098.
2281.
-969.
430.
-179.
97.
-47.
8.];
CC=[ 29.
0.
1.
-1.
1.
-1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
a = 1 ; %RADIUS
L=.1;
akm=2;gamma=0.3;arh=10; %beta1=beta2=1,a1=1,a2=2,arh=10,delta=0.5,u2=-1
alphaa=sqrt(((2+akm).*akm./(gamma.*(2+akm))).^2+arh.^2);
betaa=(2.*akm.*arh.^2./gamma).^(0.25);
alpha1=sqrt((alphaa.^2+sqrt(alphaa.^4-4.*betaa.^4))./2);
alpha2=sqrt((alphaa.^2-sqrt(alphaa.^4-4.*betaa.^4))./2);
dd=6;
c =-a/L;
b =a/L;
m =a*200; % NUMBER OF INTERVALS
%[x,y]=meshgrid((c+dd:(b-c)/m:b),(c:(b-c)/m:b)');
[x,y]=meshgrid((c+dd:(b-c)/m:b),(0:(b-c)/m:b)');
[I, J]=find(sqrt(x.^2+y.^2)<(a-0.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
warning on
psi1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);AAi=AA(i-1);BBi=BB(i-1);CCi=CC(i-1);
%psi1=-psi1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(AAi.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*legendreP(i-1,zet);
psi1=psi1+(Ai.*r.^(-i+1)+r.^(1./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(1./2).*besselk(i-1./2,r.*alpha2).*Ci).*gegenbauerC(i,-1./2, cos(t))+(AAi.*r2.^(-i+1)+r2.^(1./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*gegenbauerC(i,-1./2,zet);
end
hold on
%[DH1,h1]=contour(x,y,psi1,25,'-k','LineWidth',1.1); %,psi2,'--k',psi2,':k'
%[DH1,h1]=contour(x,y,psi1);
%p1=contour(x,y,psi1,[0.3 0.3],'k','LineWidth',1.1); %,'ShowText','on'
%p2=contour(x,y,psi1,[0.4 0.4],'r','LineWidth',1.1);
%p3=contour(x,y,psi1,[0.5 0.5],'g','LineWidth',1.1);
%p4=contour(x,y,psi1,[0.6 0.6],'b','LineWidth',1.1);
%p5=contour(x,y,psi1,[0.7 0.7],'c','LineWidth',1.1);
%p6=contour(x,y,psi1,[0.8 0.8],'m','LineWidth',1.1);
%p7=contour(x,y,psi1,[0.9 0.9],'y','LineWidth',1.1);
p1=contour(x,y,psi1,[0.01 0.01],'k','LineWidth',1.1); %,'ShowText','on'
p2=contour(x,y,psi1,[0.05 .05],'r','LineWidth',1.1);
p3=contour(x,y,psi1,[0.1 0.1],'g','LineWidth',1.1);
p4=contour(x,y,psi1,[0.4 0.4],'b','LineWidth',1.1);
p5=contour(x,y,psi1,[0.6 0.6],'c','LineWidth',1.1);
p6=contour(x,y,psi1,[0.8 0.8],'m','LineWidth',1.1);
%clabel(DH1,h1,'FontSize',10,'Color','red')
%%%%%%%%%%%%%%% $\frac{\textstyle a_1+a_2}{\textstyle h}=6.0,\;
hold on
t3 = linspace(0,pi,1000);
h2=0;
k2=0;
rr2=2;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,'-k'),'LineWidth',1.1);
fill(x2,y2,'w')
hold on
t2 = linspace(0,pi,1000);
h=dd;
k=0;
rr=1;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,'-k'),'LineWidth',1.1);
fill(x1,y1,'w')
%axis square;
axis('equal')
box on
%set(gca,'XTick',[], 'YTick', [])
axis on
xticklabels([])
yticklabels([])
legend('0.01','0.05','0.1','0.4','0.6','0.8','Location','northwest')
%title('$\frac{\beta_1}{a_1\mu}=\frac{a_1\beta_2}{\mu}=1.0,\;R_{H}=1.0,\;\frac{a_2}{a_1}=2.0$','Interpreter','latex','FontSize',12,'FontName','Times New Roman','FontWeight','Normal')
%title('$(a)\;\; R_{H}=1.0,\;\frac{\kappa}{\mu}=4.0$','Interpreter','latex','FontSize',12,'FontName','Times New Roman','FontWeight','Normal')
%%%%%%%%%%%%%%%%%%%%
  2 Comments
Shreen El-Sapa
Shreen El-Sapa on 22 Apr 2024
Thanks so much. How can I plot two spheres with the same size and complete circles not half?
Mathieu NOE
Mathieu NOE on 23 Apr 2024
hello again
you have to change the range of t2 and t3 from 0 / pi to 0 / 2*pi (btw they are identical so you could simply use one variable and not two) , like :
t3 = linspace(0,pi,1000); => t3 = linspace(0,2*pi,1000);

Sign in to comment.

Accepted Answer

Mathieu NOE
Mathieu NOE on 22 Apr 2024
hello
either you swap x and y data in your plot calls , or use view :
figure(1),plot(sin((0:0.1:3*pi)))
legend('original data')
figure(2),plot(sin((0:0.1:3*pi)))
legend('rotated graph')
view([90 90])
  2 Comments
Shreen El-Sapa
Shreen El-Sapa on 22 Apr 2024
Thanks so much. How can I plot two spheres with the same size and complete circles not half?
Mathieu NOE
Mathieu NOE on 23 Apr 2024
hello again
you have to change the range of t2 and t3 from 0 / pi to 0 / 2*pi (btw they are identical so you could simply use one variable and not two) , like :
t3 = linspace(0,pi,1000); => t3 = linspace(0,2*pi,1000

Sign in to comment.

More Answers (0)

Categories

Find more on Graphics Performance in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!