- Forward Elimination Corrected: Properly calculates the factor (k) for each element to be eliminated, ensuring correct elimination of elements below the pivot.
- Back Substitution Implemented: Solves for variables from the bottom up after converting (A) to an upper triangular form, ensuring accurate calculation of solution vector (x).
The formula doesn't calculate
1 view (last 30 days)
Show older comments
I am calculating a matrix using Gaussian elimination, but the calculation does not work under the following conditions.
A=[2 0 1; -2 4 1; -1 -1 3] b=[8 ; 0 ;2 ] x=[x1; x2; x3]
I think it doesn't work because there is a 0 in row 1 and column 2 of A. How should I change the code? Have a nice day everyone:)
here is a code
clc; clear all; close all;
A = [2 0 1 ; -2 4 1 ;-1 -1 3];
b = [8 0 2]';
%b = [7; 8 ;3];
sz = size(A,1);
disp ([A b]);
for i = 2 :1: sz
for j = 1:1:i-1
k = A(j,j)/A(i,j);
A(i,:) = k * A(i,:) - A(j,:);
b(i) = k * b(i) - b(j);
disp([A b]);
end
end
for i = sz-1:-1:1
for j = sz:-1:i+1
k = A(j,j)/A(i,j);
A(i,:) = k*A(i,:)-A(j,:);
b(i) = k* b(i) - b(j);
disp([A b]);
end
end
x = b./diag(A);
disp([A b]./diag(A));
disp(x);
0 Comments
Accepted Answer
Pooja Kumari
on 12 Apr 2024
Edited: Pooja Kumari
on 12 Apr 2024
Hello,
The issue with your code is not because there is a 0 in row 1 and column 2 of A. Key corrections in your code is as follows:
clc; clear all; close all;
A = [2 0 1 ; -2 4 1 ;-1 -1 3];
b = [8; 0; 2];
sz = size(A,1);
disp ([A b]);
% Forward elimination
for i = 1:sz-1
for j = i+1:sz
k = A(j,i)/A(i,i);
A(j,:) = A(j,:) - k * A(i,:);
b(j) = b(j) - k * b(i);
end
end
% Back substitution
x = zeros(sz,1); % Initialize solution vector
for i = sz:-1:1
x(i) = (b(i) - A(i,i+1:sz)*x(i+1:sz))/A(i,i);
end
disp(x);
More Answers (0)
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!