Using self attention layer with 2D images

33 views (last 30 days)
MAHMOUD EID
MAHMOUD EID on 7 Nov 2023
Answered: Neha on 21 Nov 2023
Hi,
I am wondering how to use the selfattention layer in image calssaifcation using CNN without we need to flatten the data as explained in this example:
% load digit dataset
digitDatasetPath = fullfile(matlabroot, 'toolbox', 'nnet', 'nndemos', 'nndatasets', 'DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[imdsTrain, imdsValidation] = splitEachLabel(imds, 0.7, 'randomized');
% define network architecture
layers = [
imageInputLayer([28 28 1], 'Name', 'input')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 64, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool2')
flattenLayer('Name', 'flatten')
selfAttentionLayer(8, 64, 'Name', 'self_attention')
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')]
% set training options
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.01, ...
'MaxEpochs', 5, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 30, ...
'Verbose', false, ...
'Plots', 'training-progress')
% training the network
net = trainNetwork(imdsTrain, layers, options);

Answers (1)

Neha
Neha on 21 Nov 2023
Hi Mahmoud,
I understand that you want to use self-attention layer in image classification. The self-attention layer, also known as the multi-head self-attention layer, is commonly employed in Transformer models like BERT and vision transformers (ViT). Its primary function is to understand the relationships between positions within the input data. This input data is usually sequential, representing either temporal sequences or 1D spatial information. Therefore it is necessary to use the "flattenLayer" to ensure that the input data to the "selfAttentionLayer" is one directional.
Hope this helps!

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!