pdepe: why does spatial discretization fail?
6 views (last 30 days)
Show older comments
Hi,
when trying to solve a PDE very similar to the heat equation pdepe yields the following:
>> pdetest
Error using pdepe (line 293)
Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative.
Error in pdetest (line 5)
sol = pdepe(0,@pde,@pdeic,@pdebc,xmesh,tspan);
What am I missing here? Please see the used code below:
function pdetest
xmesh = linspace(-4,3,82);
tspan = linspace(0,1,12);
sol = pdepe(0,@pde,@pdeic,@pdebc,xmesh,tspan);
function [c,f,s] = pde(x,t,u,DuDx)
c = 1;
f = 0.0968*DuDx;
s = 0;
function u0 = pdeic(x)
xmesh = linspace(-4,3,82);
[~, index] = min(abs(xmesh-x));
initial_values = [0.3639 0.3720 0.3801 0.3884 0.3968 ...
0.4054 0.4141 0.4229 0.4319 0.4411 0.4504 0.4599 0.4696 ...
0.4794 0.4894 0.4995 0.5098 0.5204 0.5310 0.5419 0.5530 ...
0.5642 0.5756 0.5873 0.5991 0.6111 0.6234 0.6358 0.6485 ...
0.6614 0.6745 0.6878 0.7014 0.7152 0.7292 0.7435 0.7580 ...
0.7727 0.7878 0.8030 0.8186 0.8344 0.8504 0.8668 0.8834 ...
0.9003 0.9175 0.9350 0.9528 0.9709 0.9893 1.0081 1.0271 ...
1.0465 1.0662 1.0863 1.1067 1.1274 1.1485 1.1700 1.1918 ...
1.2140 1.2366 1.2596 1.2829 1.3067 1.3309 1.3555 1.3805 ...
1.4059 1.4318 1.4581 1.4849 1.5121 1.5398 1.5680 1.5966 ...
1.6258 1.6554 1.6856 1.7163 1.7475];
u0 = initial_values(index);
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl = 0.3639;
ql = 0;
pr = 1.7475;
qr = 0;
0 Comments
Accepted Answer
Bill Greene
on 6 Apr 2015
I think you want the following in your pdebc function:
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl = ul-0.3639;
ql = 0;
pr = ur-1.7475;
qr = 0;
More Answers (0)
See Also
Categories
Find more on PDE Solvers in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!