How to plot bifurcation diagram of the phased `1D chaotic map?

4 views (last 30 days)
Arshub
Arshub on 14 May 2022
Edited: Arshub on 14 May 2022
I plot bifurcation diagram of the map bellow but we get wrong bifurcation diagram not as authers plotted as picture bellow, please check and fix my code to get as the right bifurcation diagram , why i getted wrong bifurcation diagram?
Right bifurcation diagram:
The map is :
Di+1 =⎨16*G*Di*(0.5 − Di) 0 ≤ D < 0.25
16*G*(0.5 − Di)*(0.5 − G*(0.5 − Di)) 0.25 ≤ D < 0.5
16*G*(Di − 0.5)*(0.5 − G*(Di − 0.5)) 0.5 ≤ D < 0.75
6*G*(1 − Di)*(0.5 − G*(1 − Di))0.75 ≤ D ≤ 1
my code:
clear;
scale = 10000; % determines the level of rounding
maxpoints = 300; % determines maximum values to plot
N = 4000; % number of "r" values to simulate
a = 0; % starting value of "r"
b = 2; % final value of "r"... anything higher diverges.
rs = linspace(a,b,N); % vector of "r" values
M = 700; % number of iterations of equation
% Loop through the "r" values
for j = 1:length(rs)
G=rs(j); % get current "r"
D=zeros(M,1); % allocate memory
D(1) = 0.98; % initial condition (can be anything from 0 to 1)
for i = 2:M, % iterate
if(D(i-1) >=0 && D(i-1) <0.25)
D(i)=16*G*D(i-1)*(0.5 - D(i-1));
elseif (D(i-1) >=0.25 && D(i-1) <0.5)
D(i)= 16*G*(0.5 - D(i-1))*(0.5 - G*(0.5- D(i-1)));
elseif (D(i-1) >=0.5 && D(i-1) <0.75)
D(i)= 16*G*(D(i-1) - 0.5)*(0.5 - G*(D(i-1) -0.5));
elseif (D(i-1) >=0.75 && D(i-1) <=1)
D(i)=16*G*(1 - D(i-1))*(0.5 - G*(1 - D(i-1)));
else
D(i)=0;
end
end
% only save those unique, semi-stable values
out{j} = unique(round(scale*D(end-maxpoints:end)));
end
% Rearrange cell array into a large n-by-2 vector for plotting
data = [];
for k = 1:length(rs)
n = length(out{k});
data = [data; rs(k)*ones(n,1),out{k}];
end
% Plot the data
figure(2);clf
h=plot(data(:,1),data(:,2)/scale,'b.');
set(h,'markersize',1)
%axis tight
%set(gca,'units','normalized','position',[0 0 1 1])
%set(gcf,'color','white')
%axis off
my bifurcation diagram:

Answers (0)

Products


Release

R2014a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!