Estimate GARCH(4,1) using estimate: Parameter GARCH{2} is missing
    5 views (last 30 days)
  
       Show older comments
    
Hi,
I want to fit an AR(1) Model to a time series of returns (x) and the variance process follows a GARCH(4,1) model.
model = arima('ARLags',1,'Variance',garch(4,1))
fit = estimate(model,x)
returns:
    ARIMA(1,0,0) Model:
    --------------------
    Conditional Probability Distribution: Gaussian
                                  Standard          t     
     Parameter       Value          Error       Statistic 
    -----------   -----------   ------------   -----------
     Constant   -0.000754276   0.000531875       -1.41815
        AR{1}       0.223266     0.0279149        7.99808
    GARCH(4,1) Conditional Variance Model:
    ----------------------------------------
    Conditional Probability Distribution: Gaussian
                                  Standard          t     
     Parameter       Value          Error       Statistic 
    -----------   -----------   ------------   -----------
     Constant    1.77228e-05   3.59061e-06        4.93587
     GARCH{1}        0.55604      0.113503        4.89891
     GARCH{3}       0.193253      0.193158        1.00049
     GARCH{4}       0.065569     0.0953147       0.687922
      ARCH{1}       0.176294     0.0259334        6.79798
Why is the parameter GARCH{2} missing in the table? Is it because it may be very unsignificant? I mean the parameters GARCH{3} and GARCH{4} are pretty unsignificant as well. Or are there too few observations? The time series x is 1545 observations long. When I limit the estimation to a fit period of just 1000 observations via
model = arima('ARLags',1,'Variance',garch(4,1))
fit = estimate(model,x(1:1000))
it returns:
    ARIMA(1,0,0) Model:
    --------------------
    Conditional Probability Distribution: Gaussian
                                  Standard          t     
     Parameter       Value          Error       Statistic 
    -----------   -----------   ------------   -----------
     Constant    0.000184079   0.000783618       0.234909
        AR{1}       0.234824     0.0336974         6.9686
    GARCH(1,1) Conditional Variance Model:
    ----------------------------------------
    Conditional Probability Distribution: Gaussian
                                  Standard          t     
     Parameter       Value          Error       Statistic 
    -----------   -----------   ------------   -----------
     Constant      4.899e-05   1.53734e-05        3.18668
     GARCH{1}       0.796332      0.279077        2.85345
      ARCH{1}       0.157239     0.0455136        3.45478
Now the result is a GARCH(1,1) model, allthough I defined the model to be a GARCH(4,1).
Using Econometrics Toolbox for MATLAB R2014a.
Thanks in Advance!
Accepted Answer
More Answers (0)
See Also
Categories
				Find more on Conditional Variance Models in Help Center and File Exchange
			
	Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!