How can I substitute a variable?
1 view (last 30 days)
Show older comments
Dear community,
How can I use 'subs' here?
I defined x array to interpolate y and here I want to substitute x= 2 into y . By the way, how can I substitute x into y?
a= 5;
x = 0:pi/10:pi;
y = a*sin(x).^2 ./(sin(x) + cos(x));
subs ( y,{x},{2} ) --> it won't work by doing like this
Thanks in advance
0 Comments
Accepted Answer
John D'Errico
on 20 Dec 2014
Edited: John D'Errico
on 20 Dec 2014
So why not use subs? It works fine, as long as you use it as designed.
syms x
a = 5;
% I don't need the dot operators in a symbolic expression,
% but they do work too.
y = a*sin(x)^2 /(sin(x) + cos(x))
y =
(5*sin(x)^2)/(cos(x) + sin(x))
subs(y,x,1:pi/10:pi)
ans =
[ (5*sin(1)^2)/(cos(1) + sin(1)), (5*sin(739805897222023/562949953421312)^2)/(cos(739805897222023/562949953421312) + sin(739805897222023/562949953421312)), (5*sin(458330920511367/281474976710656)^2)/(cos(458330920511367/281474976710656) + sin(458330920511367/281474976710656)), (5*sin(1093517784823445/562949953421312)^2)/(cos(1093517784823445/562949953421312) + sin(1093517784823445/562949953421312)), (5*sin(317593432156039/140737488355328)^2)/(cos(317593432156039/140737488355328) + sin(317593432156039/140737488355328)), (5*sin(1447229672424867/562949953421312)^2)/(cos(1447229672424867/562949953421312) + sin(1447229672424867/562949953421312)), (5*sin(812042808112789/281474976710656)^2)/(cos(812042808112789/281474976710656) + sin(812042808112789/281474976710656))]
Not very easy to read that way, or that useful, so use vpa to improve things a bit...
vpa(subs(y,x,1:pi/10:pi))
ans =
[ 2.5621910014165363100864295707477, 3.8309204938871849945381706934322, 5.2967473394750604192098370433573, 7.6345151542111843907753899746208, 21.303646775422896588787558509401, -4.8465627759522670140582286462245, -0.45155218609854555823864593466888]
0 Comments
More Answers (1)
Shoaibur Rahman
on 20 Dec 2014
a= 5;
syms x
y = a*sin(x).^2 ./(sin(x) + cos(x));
subs ( y,{x},{2} )
2 Comments
Shoaibur Rahman
on 20 Dec 2014
subs is a symbolic substitution in Matlab. So, what if you use any one of the following techniques:
a= 5;
x = 0:pi/10:pi;
y = a*sin(x).^2 ./(sin(x) + cos(x));
interp1(x,y,2)
This approximates a value of y at x = 2, but may not exact. Second, you can define y as function of x, then replace x by any value. In this case you can expect an exact value.
a = 5;
y = @(x) a*sin(x).^2 ./(sin(x) + cos(x));
y1 = y(0:pi/10:pi);
y2 = y(2)
See Also
Categories
Find more on Assumptions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!