Plotting different datasets from looped ode45 using subplots.
    4 views (last 30 days)
  
       Show older comments
    
    Frederik Bjerregaard
 on 9 Dec 2021
  
    
    
    
    
    Commented: Star Strider
      
      
 on 9 Dec 2021
            Hi. I have a script where I'm solving and ode for different values of a parameter. I want to plot each of these cases on a seperate subplot as plotting them all on the same plot is messy. So far i have managed to get the result for the first iteration onto every subplot using:
clc; clear;close all;
% Defining parameters and initial conditions
    f = 0.35+[0.1:0.1:0.4];
    r = 0.3;
    zeta = 0.25;
    eps = -1/6;
    Theta0 = [0.30, 0];
    tspan = [0 100];
% Solver options
    opts = odeset('RelTol',1e-6,'AbsTol',[1e-9 1e-9]);
% Solver   
   for i = 1:length(f)    
[t,theta] = ode45(@(t,theta) odefcn(t,theta,f(i),r,zeta), tspan,Theta0);
    eqn=@(A) f(i)^2-(-r^2*A+A+(3*eps*A^3)/4)^2-(2*zeta*r*A)^2;
    Amp(:,i)=fzero(eqn,0.1);
    thetaHB=Amp(i).*sin(r.*t);
    theta_HB=Amp(i).*r.*cos(r.*t);
subplot(2,2,1);
plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
pbaspect([1 1 1])
title('f=0.35+0.1');
xlabel ('\theta');
ylabel('d\theta/dt');
legend('Numerical','Harmonic Balance');
subplot(2,2,2);
plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
pbaspect([2 2 1])
title('f=0.35+0.2');
xlabel ('\theta');
ylabel('d\theta/dt');
legend('Numerical','Harmonic Balance');
subplot(2,2,3);
plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
pbaspect([1 1 1])
title('f=0.35+0.3');
xlabel ('\theta');
ylabel('d\theta/dt');
legend('Numerical','Harmonic Balance');
subplot(2,2,4);
plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
pbaspect([1 1 1])
title('f=0.35+0.4');
xlabel ('\theta');
ylabel('d\theta/dt');
legend('Numerical','Harmonic Balance');
sgtitle('Phase Planes r=0.3','FontSize',20)
    end
The underlying function for odefcn is
    function dthetadt = odefcn(t,theta,f,r,zeta)
    dthetadt = zeros(2,1);
    dthetadt(1)=theta(2);
    dthetadt(2)=f.*sin(r.*t)-2.*zeta.*theta(2)-sin(theta(1));
end
0 Comments
Accepted Answer
  Star Strider
      
      
 on 9 Dec 2021
        I assume that the intended result is to have different plots representing the function with different values of ‘f’ in each subplot.  The code needs to be tweaked dlightly to get there — 
% Defining parameters and initial conditions
f0 = 0.35;
fv = [0.1:0.1:0.4];
r = 0.3;
zeta = 0.25;
eps = -1/6;
Theta0 = [0.30, 0];
tspan = [0 100];
% Solver options
opts = odeset('RelTol',1e-6,'AbsTol',[1e-9 1e-9]);
% Solver   
for i = 1:numel(fv)    
    f = f0 + fv(i);                                                         % Create New 'f' For Each Iteration
    [t,theta] = ode45(@(t,theta) odefcn(t,theta,f,r,zeta), tspan,Theta0);
    eqn=@(A) f^2-(-r^2*A+A+(3*eps*A^3)/4)^2-(2*zeta*r*A)^2;
    Amp(:,i)=fzero(eqn,0.1);
    thetaHB=Amp(i).*sin(r.*t);
    theta_HB=Amp(i).*r.*cos(r.*t);
    subplot(3,2,i);                                                         % Iterate Through 'subplot' Array
    plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
    pbaspect([1 1 1])
    title(sprintf('f=0.35+%.1f',fv(i)));
    xlabel ('\theta');
    ylabel('d\theta/dt');
    hl = legend('Numerical','Harmonic Balance');
    hl.Visible = 'off';
%     subplot(2,2,2);
%     plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
%     pbaspect([2 2 1])
%     title('f=0.35+0.2');
%     xlabel ('\theta');
%     ylabel('d\theta/dt');
%     legend('Numerical','Harmonic Balance');
%     
%     subplot(2,2,3);
%     plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
%     pbaspect([1 1 1])
%     title('f=0.35+0.3');
%     xlabel ('\theta');
%     ylabel('d\theta/dt');
%     legend('Numerical','Harmonic Balance');
%     
%     subplot(2,2,4);
%     plot(theta(:,1),theta(:,2),thetaHB,theta_HB);
%     pbaspect([1 1 1])
%     title('f=0.35+0.4');
%     xlabel ('\theta');
%     ylabel('d\theta/dt');
%     legend('Numerical','Harmonic Balance');
%     sgtitle('Phase Planes r=0.3','FontSize',20)
end
subplot(3,2,[5 6])
ax = gca;
pos = ax.Position;
hl.Position = pos + [0.1 0.15 -0.2 -0.2];
hl.Visible = 'on';
ax.Visible = 'off';
sgtitle('Phase Planes r=0.3','FontSize',20)
    function dthetadt = odefcn(t,theta,f,r,zeta)
    dthetadt = zeros(2,1);
    dthetadt(1)=theta(2);
    dthetadt(2)=f.*sin(r.*t)-2.*zeta.*theta(2)-sin(theta(1));
end
I re-positioned the legend so that it would not cover the plots, since it was common to all of them.  
.
2 Comments
More Answers (0)
See Also
Categories
				Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


