How do I generate a pdf from some known percentile values
30 views (last 30 days)
Show older comments
Christopher Stokes
on 12 Oct 2021
Commented: Star Strider
on 13 Oct 2021
Hi Matlab community,
I have percentile values that describe a distribution of possible sea level rise magnitudes. I would like to be able to generate a probability density function that closely approximates the actual distribution from which the percentile values were generated. Can anyone suggest how to achieve this please?
Example data:
prctiles = [5 10 30 33 50 67 70 90 95];
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
0 Comments
Accepted Answer
Star Strider
on 12 Oct 2021
A slightly different approach —
prctiles = [5 10 30 33 50 67 70 90 95];
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
B = fminsearch(@(b) norm(prctiles/100 - cdf('Normal',SLR,b(1),b(2))), [SLR(prctiles==50);rand])
SLRv = linspace(min(SLR), max(SLR));
yfit = cdf('Normal', SLRv, B(1), B(2));
figure
plot(SLR, prctiles/100, 'p')
hold on
plot(SLRv, yfit, '-r')
hold off
grid
title(sprintf('$p = N(%.2f, %.3f)$',B), 'Interpreter','latex')
legend('SLR','Fitted Noprmal Distribution', 'Location','NW')
Experiment to get different results.
.
6 Comments
More Answers (2)
Image Analyst
on 12 Oct 2021
Have you seen fitdist() in the Stats toolbox?
Of course you'd be better off with much more data.
1 Comment
Image Analyst
on 12 Oct 2021
Edited: Image Analyst
on 12 Oct 2021
Here's an example:
clc; % Clear the command window.
fprintf('Beginning to run %s.m ...\n', mfilename);
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 17;
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
% Plot data.
subplot(2, 1, 1);
bar(SLR)
grid on;
title('Original SLR Data', 'FontSize', fontSize);
xlabel('Index', 'FontSize', fontSize);
ylabel('SLR Value', 'FontSize', fontSize);
% Get distribution.
d = fitdist(SLR(:), 'Normal')
% Make curve, plot distribution.
% https://en.wikipedia.org/wiki/Normal_distribution
x = linspace(min(SLR), max(SLR), 1000);
amp = 1 / (d.sigma * sqrt(2*pi));
y = amp * exp(-(1/2) * ((x - d.mu) / d.sigma) .^ 2)
subplot(2, 1, 2);
plot(x, y, 'b-', 'LineWidth', 2);
grid on;
title('Estimated Distribution of SLR', 'FontSize', fontSize);
xlabel('SLR', 'FontSize', fontSize);
ylabel('PDF', 'FontSize', fontSize);
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/765301/image.png)
Pick the distribution that fits the theory of what the distribution should actually be. Hopefully you know this in advance. Actually you need to if you're going to model it. Otherwise just normalize your histogram and that is the actual PDF.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!