Why is the polyval command giving two different answers?
2 views (last 30 days)
Show older comments
Why does the polyval operator not work as expected. Is the ans variable not stored as a column vector? Why aren't the second, fifth, and sixth results equal?
>> roots([1,-8,17,2,-24])
ans =
4.0000
3.0000
2.0000
-1.0000
>> polyval([1.-8,17,2,-24],ans)
ans =
-192.0000
-54.0000
-8.0000
-2.0000
>> roots([1,-8,17,2,-24])
ans =
4.0000
3.0000
2.0000
-1.0000
>> x=ans
x =
4.0000
3.0000
2.0000
-1.0000
>> polyval([1,-8,17,2,-24],x)
ans =
1.0e-13 *
0.8882
0.3197
0.0355
0.1421
>> polyval([1,-8,17,2,-24],[2.0000;3.0000;-1.0000;3])
ans =
0
0
0
0
0 Comments
Accepted Answer
Alberto
on 22 Sep 2014
Instruction roots uses an iterative numeric method to approximate the solution in float arithmetic. What you get is an excellent approximation.
If you need the exact solution you should try a symbolic method:
g = x^4-8*x^3 + 17*x^2 +2*x -24
g =
x^4 - 8*x^3 + 17*x^2 + 2*x - 24
>> sol=solve(g==0)
sol =
2
3
4
-1
1 Comment
Matt J
on 23 Sep 2014
You also may need a symbolic version of polyval, even when you have the exact roots:
>> polyval([1,-8,17,2,-24]/3,[4 3 2 -1])
ans =
1.0e-14 *
0.8882 0.1776 0.1776 0.1776
See Also
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!