Main Content


LaTeX form of symbolic expression



chr = latex(S) returns the LaTeX form of the symbolic expression S.


collapse all

Find the LaTeX form of the symbolic expressions x^2 + 1/x and sin(pi*x) + phi.

syms x phi
chr = latex(x^2 + 1/x)
chr = 
chr = latex(sin(pi*x) + phi)
chr = 
'\phi +\sin\left(\pi \,x\right)'

Find the LaTeX form of the symbolic array S.

syms x
S = [sym(1)/3 x; exp(x) x^2]
S = 


chr = latex(S)
chr = 
'\left(\begin{array}{cc} \frac{1}{3} & x\\ {\mathrm{e}}^x & x^2 \end{array}\right)'

Since R2021b

Compute several symbolic matrix variables, and then find their LaTeX form.

Create 3-by-3 and 3-by-1 symbolic matrix variables.

syms A 3 matrix
syms X [3 1] matrix

Find the Hessian matrix of XTAX. Derived equations involving symbolic matrix variables appear in typeset as they would be in textbooks.

f = X.'*A*X
f = XTAX
H = diff(f,X,X.')
H = AT+A

Generate the LaTeX form of the symbolic matrix variables f and H.

chrf = latex(f)
chrf = 
chrH = latex(H)
chrH = 

Modify generated LaTeX by setting symbolic preferences using the sympref function.

Generate the LaTeX form of the expression π with the default symbolic preference.

chr = latex(sym(pi))
chr = 
'\pi '

Set the 'FloatingPointOutput' preference to true to return symbolic output in floating-point format. Generate the LaTeX form of π in floating-point format.

chr = latex(sym(pi))
chr = 

Now change the output order of a symbolic polynomial. Create a symbolic polynomial and set 'PolynomialDisplayStyle' preference to 'ascend'. Generate LaTeX form of the polynomial sorted in ascending order.

syms x;
poly = x^2 - 2*x + 1;
chr = latex(poly)
chr = 

The preferences you set using sympref persist through your current and future MATLAB® sessions. Restore the default values by specifying the 'default' option.


For x and y from -2π to 2π, plot the 3-D surface ysin(x)-xcos(y). Store the axes handle in a by using gca. Display the axes box by using a.Box and set the tick label interpreter to latex.

Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2. Convert the axis limits to precise multiples of pi/2 using round and get the symbolic tick values in S. Display the ticks by setting the XTick property of a to S. Create the LaTeX labels for the x-axis by using arrayfun to apply latex to S and then concatenating $. Display the labels by assigning them to the XTickLabel property of a.

Repeat these steps for the y-axis. Set the x- and y-axes labels and the title using the latex interpreter.

syms x y
f = y.*sin(x)-x.*cos(y);
fsurf(f,[-2*pi 2*pi])
a = gca;
a.TickLabelInterpreter = 'latex';
a.Box = 'on';
a.BoxStyle = 'full';

S = sym(a.XLim(1):pi/2:a.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
a.XTick = double(S);
a.XTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$');

S = sym(a.YLim(1):pi/2:a.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
a.YTick = double(S);
a.YTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$');

title(['$' latex(f) '$ for $x$ and $y$ in $[-2\pi,2\pi]$'],'Interpreter','latex')

Figure contains an axes object. The axes object with title y blank sin leftParenthesis x rightParenthesis minus x blank cos leftParenthesis y rightParenthesis for x and y in bracketleft minus 2 pi , 2 pi bracketright contains an object of type functionsurface.

Input Arguments

collapse all

Input, specified as a symbolic number, variable, vector, array, function, expression, or symbolic matrix variable (since R2021b).

Introduced before R2006a