euler
Euler numbers and polynomials
Syntax
Description
euler( returns the
n)nth Euler number.
euler( returns the
n,x)nth Euler polynomial.
Examples
Euler Numbers with Odd and Even Indices
The Euler numbers with even indices alternate the signs. Any
Euler number with an odd index is 0.
Compute the even-indexed Euler numbers with the indices from 0 to
10:
euler(0:2:10)
ans =
1 -1 5 -61...
1385 -50521Compute the odd-indexed Euler numbers with the indices from 1 to
11:
euler(1:2:11)
ans =
0 0 0 0 0 0Euler Polynomials
For the Euler polynomials, use euler with
two input arguments.
Compute the first, second, and third Euler polynomials in variables
x, y, and z,
respectively:
syms x y z euler(1, x) euler(2, y) euler(3, z)
ans = x - 1/2 ans = y^2 - y ans = z^3 - (3*z^2)/2 + 1/4
If the second argument is a number, euler evaluates the
polynomial at that number. Here, the result is a floating-point number because the input
arguments are not symbolic numbers:
euler(2, 1/3)
ans = -0.2222
To get the exact symbolic result, convert at least one number to a symbolic object:
euler(2, sym(1/3))
ans = -2/9
Plot Euler Polynomials
Plot the first six Euler polynomials.
syms x fplot(euler(0:5, x), [-1 2]) title('Euler Polynomials') grid on

Handle Expressions Containing Euler Polynomials
Many functions, such as diff and
expand, can handle expressions containing
euler.
Find the first and second derivatives of the Euler polynomial:
syms n x diff(euler(n,x^2), x)
ans = 2*n*x*euler(n - 1, x^2)
diff(euler(n,x^2), x, x)
ans = 2*n*euler(n - 1, x^2) + 4*n*x^2*euler(n - 2, x^2)*(n - 1)
Expand these expressions containing the Euler polynomials:
expand(euler(n, 2 - x))
ans = 2*(1 - x)^n - (-1)^n*euler(n, x)
expand(euler(n, 2*x))
ans = (2*2^n*bernoulli(n + 1, x + 1/2))/(n + 1) -... (2*2^n*bernoulli(n + 1, x))/(n + 1)
Input Arguments
More About
Tips
For the other meaning of Euler’s number, e = 2.71828…, call
exp(1)to return the double-precision representation. For the exact representation of Euler’s number e, callexp(sym(1)).For the Euler–Mascheroni constant, see
eulergamma.
Version History
Introduced in R2014a