acot
Symbolic inverse cotangent function
Syntax
Description
Examples
Inverse Cotangent Function for Numeric and Symbolic Arguments
Depending on its arguments, acot returns
floating-point or exact symbolic results.
Compute the inverse cotangent function for these numbers. Because these numbers are
not symbolic objects, acot returns floating-point results.
A = acot([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])
A = -0.7854 -1.2490 -1.0472 1.1071 0.7854 0.5236
Compute the inverse cotangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, acot returns unresolved symbolic
calls.
symA = acot(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))
symA = [ -pi/4, -acot(1/3), -pi/3, acot(1/2), pi/4, pi/6]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.78539816339744830961566084581988,... -1.2490457723982544258299170772811,... -1.0471975511965977461542144610932,... 1.1071487177940905030170654601785,... 0.78539816339744830961566084581988,... 0.52359877559829887307710723054658]
Plot Inverse Cotangent Function
Plot the inverse cotangent function on the interval from -10 to 10.
syms x fplot(acot(x),[-10 10]) grid on

Handle Expressions Containing Inverse Cotangent Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
acot.
Find the first and second derivatives of the inverse cotangent function:
syms x diff(acot(x), x) diff(acot(x), x, x)
ans = -1/(x^2 + 1) ans = (2*x)/(x^2 + 1)^2
Find the indefinite integral of the inverse cotangent function:
int(acot(x), x)
ans = log(x^2 + 1)/2 + x*acot(x)
Find the Taylor series expansion of acot(x) for x >
0:
assume(x > 0) taylor(acot(x), x)
ans = - x^5/5 + x^3/3 - x + pi/2
For further computations, clear the assumption on x by recreating
it using syms:
syms x
Rewrite the inverse cotangent function in terms of the natural logarithm:
rewrite(acot(x), 'log')
ans = (log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2
Input Arguments
Version History
Introduced before R2006a