findopOptions
Set options for finding operating points from specifications
Description
returns
an option set with additional options specified by one or more options
= findopOptions(Name,Value
)Name,Value
pair
arguments. Use this option set to specify options for the findop
command.
Examples
Create Option Set for Operating Point Search
Create an option set for operating point search that sets the optimizer type to gradient descent and suppresses the display output of findop
.
option = findopOptions('OptimizerType','graddescent','DisplayReport','off');
Alternatively, use dot notation to set the values of options
.
options = findopOptions; options.OptimizerType = 'graddescent'; options.DisplayReport = 'off';
Input Arguments
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'DisplayReport','off'
suppresses
the display of the operating point search report to the Command Window.
OptimizerType
— Optimizer type used by the optimization algorithm
'graddescent-elim'
(default) | 'graddescent'
| 'graddescent-proj'
| 'lsqnonlin'
| 'lsqnonlin-proj'
| 'simplex'
Optimizer type used by the optimization algorithm, specified
as the comma-separated pair consisting of 'OptimizerType'
and
one of the following:
'graddescent-elim'
— Enforce an equality constraint to force the time derivatives of states to be zero (dx/dt = 0
,x(k+1) = x(k)
) and output signals to be equal to their specified known values. The optimizer fixes the states,x
, and inputs,u
, that are marked asKnown
in an operating point specification, and optimizes the remaining variables.'graddescent'
— Enforce an equality constraint to force the time derivatives of states to be zero (dx/dt = 0
,x(k+1) = x(k)
) and the output signals to be equal to their specified known values. The optimizer also minimizes the error between the states,x
, and inputs,u
, and their respective known values from an operating point specification. If there are not any inputs or states marked asKnown
,findop
attempts to minimize the deviation between the initial guesses forx
andu
, and their trimmed values.'graddescent-proj'
— In addition to'graddescent'
, enforce consistency of model initial conditions at each function evaluation. To specify whether constraints are hard or soft, use theConstraintType
option. This optimization method does not support analytical Jacobians.'lsqnonlin'
— Fix the states,x
, and inputs,u
, marked asKnown
in an operating point specification, and optimize the remaining variables. The algorithm tries to minimize both the error in the time derivatives of the states (dx/dt = 0
,x(k+1) = x(k)
) and the error between the outputs and their specified known values.'lsqnonlin-proj'
— In addition to'lsqnonlin'
, enforce consistency of model initial conditions at each function evaluation. This optimization method does not support analytical Jacobians.'simplex'
— Use the same cost function aslsqnonlin
with the direct search optimization routine found infminsearch
.
For more information about these optimization algorithms, see fmincon
(Optimization Toolbox), lsqnonlin
(Optimization Toolbox), and fminsearch
.
OptimizationOptions
— Options for the optimization algorithm
structure
Options for the optimization algorithm, specified as the comma-separated
pair consisting of 'OptimizationOptions'
and a
structure created using the optimset
(Optimization Toolbox) function.
DisplayReport
— Flag indicating whether to display the operating summary report
'on'
(default) | 'off'
| 'iter'
Flag indicating whether to display the operating point summary
report, specified as the comma-separated pair consisting of 'DisplayReport'
and
one of the following:
'on'
— Display the operating point summary report in the MATLAB® command window when runningfindop
.'off'
— Suppress display of the summary report.'iter'
— Display an iterative update of the optimization progress.
AreParamsTunable
— Flag indicating whether to recompile the model when varying parameter values
true
(default) | false
Flag indicating whether to recompile the model when varying
parameter values for trimming, specified as the comma-separated pair
consisting of 'AreParamsTunable'
and one of the
following:
true
— Do not recompile the model when all varying parameters are tunable. If any varying parameters are not tunable, recompile the model for each parameter grid point, and issue a warning message.false
— Recompile the model for each parameter grid point. Use this option when you vary the values of nontunable parameters.
ConstraintType
— Constraint types for 'graddescent-proj'
structure
Constraint types for 'graddescent-proj'
optimizer
algorithm, specified as the comma-separated pair consisting of
'ConstraintType'
and a structure with the
following fields:
dx
— Type for constraints on state derivativesx
— Type for constraints on state valuesy
— Type for constraints on output values
Specify each constraint as one of the following:
'hard'
— Enforce the constraints to be zero.'soft'
— Minimize the constraints.
All constraint types are 'hard'
by default.
Output Arguments
options
— Trimming options
findopOptions
option set
Trimming options, returned as a findopOptions
option
set.
Version History
Introduced in R2013bR2017b: 'graddescent_elim'
value of the Optimizer
property is now 'graddescent-elim'
The 'graddescent_elim'
value of the
Optimizer
property of a findopOptions
object is now 'graddescent-elim'
.
To update your code, change the optimizer value from
graddescent_elim
to
graddescent-elim
. The following table shows the typical
usage of this property value and how to update your code.
If your code has this form: | Use this code instead: |
---|---|
opt = findopOptions('Optimizer',... 'graddescent_elim'); |
opt = findopOptions('Optimizer',... 'graddescent-elim') |
opt = findopOptions; opt.Optimizer = 'graddescent_elim'; |
opt = findopOptions; opt.Optimizer = 'graddescent-elim'; |
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)