Basic Loss Given Default Model Validation
This example shows how to perform basic model validation on a loss given default (LGD) model by viewing the fitted model, estimated coefficients, and p-values. For more information on model validation, see modelDiscrimination
and modelCalibration
.
Load Data
Load the portfolio data.
load LGDData.mat
head(data)
LTV Age Type LGD _______ _______ ___________ _________ 0.89101 0.39716 residential 0.032659 0.70176 2.0939 residential 0.43564 0.72078 2.7948 residential 0.0064766 0.37013 1.237 residential 0.007947 0.36492 2.5818 residential 0 0.796 1.5957 residential 0.14572 0.60203 1.1599 residential 0.025688 0.92005 0.50253 investment 0.063182
Fit Model and Review Model Goodness of Fit
Create training and test datasets to perform a basic model validation.
rng('default'); % for reproducibility NumObs = height(data); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Fit the model using fitLifetimePDModel
.
ModelType = "regression"; lgdModel = fitLGDModel(data(TrainingInd,:),ModelType,... 'ModelID','Example',... 'Description','Example LGD regression model.',... 'PredictorVars',{'LTV' 'Age' 'Type'},... 'ResponseVar','LGD'); disp(lgdModel)
Regression with properties: ResponseTransform: "logit" BoundaryTolerance: 1.0000e-05 ModelID: "Example" Description: "Example LGD regression model." UnderlyingModel: [1x1 classreg.regr.CompactLinearModel] PredictorVars: ["LTV" "Age" "Type"] ResponseVar: "LGD" WeightsVar: ""
Display the underlying statistical model. The displayed information contains the coefficient estimates, as well as their standard errors, t-statistics and p-values. The underlying statistical model also shows the number of observations and other fit metrics.
lgdModel.UnderlyingModel
ans = Compact linear regression model: LGD_logit ~ 1 + LTV + Age + Type Estimated Coefficients: Estimate SE tStat pValue ________ ________ _______ __________ (Intercept) -4.7549 0.36041 -13.193 3.0997e-38 LTV 2.8565 0.41777 6.8377 1.0531e-11 Age -1.5397 0.085716 -17.963 3.3172e-67 Type_investment 1.4358 0.2475 5.8012 7.587e-09 Number of observations: 2093, Error degrees of freedom: 2089 Root Mean Squared Error: 4.24 R-squared: 0.206, Adjusted R-Squared: 0.205 F-statistic vs. constant model: 181, p-value = 2.42e-104
In the case of the underlying statistical model for a Regression
model, the underlying model is returned as a compact linear model object. The compact version of the underlying Regression
model is an instance of the classreg.regr.CompactLinearModel
class. For more information, see fitlm
and CompactLinearModel
.
See Also
fitLGDModel
| predict
| modelDiscrimination
| modelDiscriminationPlot
| modelCalibration
| modelCalibartionPlot
| Regression
| Tobit
Related Examples
- Model Loss Given Default
- Compare Tobit LGD Model to Benchmark Model
- Compare Loss Given Default Models Using Cross-Validation