# Complex Burst Matrix Solve Using Q-less QR Decomposition

Compute the value of *X* in the equation
*A*'*A**X* = *B* for
complex-valued matrices using Q-less QR decomposition

**Library:**Fixed-Point Designer HDL Support / Matrices and Linear Algebra / Linear System Solvers

## Description

The Complex Burst Matrix Solve Using Q-less QR Decomposition block solves
the system of linear equations, *A*'*A**X* =
*B*, using Q-less QR decomposition, where *A* and
*B* are complex-valued matrices.

When Regularization parameter is nonzero, the Complex Burst Matrix Solve Using Q-less QR Decomposition block solves the matrix equation

$${\left[\begin{array}{c}\lambda {I}_{n}\\ A\end{array}\right]}^{\text{'}}\cdot \left[\begin{array}{c}\lambda {I}_{n}\\ A\end{array}\right]X=\left({\lambda}^{2}{I}_{n}+A\text{'}A\right)X=B$$

where *λ* is the regularization parameter,
*A* is an *m*-by-*n* matrix, and
*I _{n}* =

`eye(`*n*)

.## Ports

### Input

### Output

## Parameters

## Model Examples

## Tips

Use `fixed.getQlessQRMatrixSolveModel(A,B)`

to generate a template model
containing a Complex Burst Matrix Solve Using Q-less QR Decomposition block for
complex-valued input matrices `A`

and `B`

.

## Extended Capabilities

## Version History

**Introduced in R2020a**