# gftrunc

Minimize length of polynomial representation

## Syntax

``c = gftrunc(a)``

## Description

example

````c = gftrunc(a)` truncates a row vector, `a`, that gives the coefficients of a GF(p) polynomial in order of ascending powers. If `a`(k) = 0 whenever k > d + 1, the polynomial has degree d. The row vector `c` omits these high-order zeros and thus has length d + 1.```

## Examples

collapse all

Use `gftrunc` to truncate the row-vector representation of ${\mathit{x}}^{2}+{2\mathit{x}}^{3}+{3\mathit{x}}^{4}+{4\mathit{x}}^{7}+{5\mathit{x}}^{8}$, removing nonsignificant zero-valued elements.

`vec = [0 0 1 2 3 0 0 4 5 0 0]`
```vec = 1×11 0 0 1 2 3 0 0 4 5 0 0 ```
`gfpretty([vec])`
``` 2 3 4 7 8 X + 2 X + 3 X + 4 X + 5 X ```

Zeros are removed from the end of the row-vector representation, but not from the beginning or middle of the row vector.

`c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])`
```c = 1×9 0 0 1 2 3 0 0 4 5 ```
`gfpretty(c)`
``` 2 3 4 7 8 X + 2 X + 3 X + 4 X + 5 X ```

## Version History

Introduced before R2006a