File Exchange

image thumbnail

Satellite Orbits: Models, Methods and Applications

version 2.0.0.0 (19.3 MB) by Meysam Mahooti
Satellite Orbits: Models, Methods and Applications

66 Downloads

Updated 30 Jan 2018

View License

Exercise 2-1: Orbit raising using Hohmann transfer
Exercise 2-2: Solution of Kepler's equation
Exercise 2-3: Osculating elements
Exercise 2-4: Topocentric satellite motion
Exercise 2-5: Sunsynchronous repeat orbits
Exercise 2-6: Initial orbit determination (two sets of range and angle measurements of a satellite)
Exercise 3-1: Gravity field
Exercise 3-2: Lunar ephemerides
Exercise 3-3: Accelerations
Exercise 3-4: Orbit Perturbations
Exercise 4-1: Runge-Kutta 4th-order Integration
Exercise 4-2: Gauss-Jackson 4th-order predictor
Exercise 4-3: Step size control of DE multistep method
Exercise 5-1: Transformation from celestial to terrestrial reference system
Exercise 5-2: Velocity in the Earth-fixed frame
Exercise 5-3: Geodetic coordinates
Exercise 6-1: Light Time Iteration
Exercise 6-2: Range Rate Modelling
Exercise 6-3: User Clock Error from GPS Pseudorange
Exercise 6-4: Tropospheric Refraction
Exercise 7-1: State transition matrix
Exercise 8-1: Least-squares fit using Givens rotations
Exercise 8-2: Least-squares orbit determination
Exercise 8-3: Orbit Determination using Extended Kalman Filter
GEODA : Geostationary satellite Orbit Determination error Analysis
RTOD : Real Time Orbit Determination based on GPS navigation data
TDRSOD : Orbit Determination from Tracking and Data Relay Satellite measurements
References:
O. Montenbruck, E. Gill, "Satellite Orbits: Models, Methods and Applications", Springer Verlag, Heidelberg; 2005.
D. Vallado, "Fundamentals of Astrodynamics and Applications", Microcosm Press/Springer; 3rd edition (April 20, 2007).
O. Montenbruck, T. Pfleger, "Astronomy on the Personal Computer", Springer Verlag, Heidelberg; 4th edition (2000).
L. F. Shampine, Rebecca Chan Allen, S. Pruess, "Fundamentals of Numerical Computing", Wiley; 1 edition (August 9, 1997).
L. F. Shampine, M. K. Gordon, "Computer Solution of Ordinary Differential Equations", Freeman and Comp., San Francisco (1975).
G. Seeber, "Satellite Geodesy", 2nd completely revised and extended edition (June 19, 2003).
A. C. Long, J. O. Cappellari, C. E. Velez, A. J. Fuchs, "Mathematical Theory of the Goddard Trajectory Determination System", Goddard Space Flight Center, FDD/552-89/001, Greenbelt, Maryland (1989).
http://ssd.jpl.nasa.gov/?planet_eph_export
http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE
https://celestrak.com/SpaceData/

Updates

2.0.0.0

Revised on 2018-01-27.

1.1.0.0

Modified Harris-Priester model is replaced by NRLMSISE00 atmospheric density model.

1.1.0.0

Revised on 2016-11-17.

1.1.0.0

The image is added.

1.1.0.0

Computation of state transition matrix (Exercise_7_1.m) is improved to decrease CPU time.

1.1.0.0

NRLMSISE00 atmospheric density model is replaced by modified Harris-Priester model.
Low precision analytical lunar ephemeris is replaced by Brown's theory (Improved Lunar Ephemeris) and JPL precise ephemeris.

1.1.0.0

Density_nrlmsise00.m is improved.

1.1.0.0

TDRSOD.m and Trj.m are changed to decrease the CPU time.

1.1.0.0

TDRSOD.m and Trj.m are changed to decrease the CPU time.

MATLAB Release Compatibility
Created with R2017b
Compatible with any release
Platform Compatibility
Windows macOS Linux

satellite orbits 2.0/