Cody

Problem 43642. Euclidean distance from a point to a polynomial

Solution 2170974

Submitted on 23 Mar 2020
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Fail
x0y0 = [-2 5]; P = [0.5 3 -5]; y_correct = 4.3093988461280149175163000679048; tol = 5e-13; assert(abs(distance2polynomial(P,x0y0)-y_correct) < tol)

S = 122.329000000000e+003

Assertion failed.

2   Fail
x0y0 = [pi, pi]; P = [10]; y_correct = 6.8584073464102067615373566167205; tol = 7e-13; assert(abs(distance2polynomial(P,x0y0)-y_correct) < tol)

S = 131.417000000000e+003

Assertion failed.

3   Fail
x0y0 = [0.25,50]; P = [1 2 3 4 5]; y_correct = 1.6470039192886012020234097061626; tol = 5e-13; assert(abs(distance2polynomial(P,x0y0)-y_correct) < tol)

S = 118.969000000000e+003

Assertion failed.

4   Pass
x0y0 = [-3 -3]; P = [-2 1]; y_correct = 4.4721359549995793928183473374626; tol = 5e-13; assert(abs(distance2polynomial(P,x0y0)-y_correct) < tol)

S = 110.001000000000e+003

5   Fail
x0y0 = [0 5]; P = [1 0 1]; y_correct = 1.9364916731037084425896326998912; tol = 2e-13; assert(abs(distance2polynomial(P,x0y0)-y_correct) < tol)

S = 81.2930000000000e+003 118.709000000000e+003

Assertion failed.

6   Pass
x0y0 = [-2 -5]; P = [0.5 3 -5]; y_correct = 1.8901381949770695260066523338279; tol = 2e-13; (abs(distance2polynomial(P,x0y0)-y_correct) < tol)

S = 97.7860000000000e+003 ans = logical 0