Test  Status  Code Input and Output 

1  Pass 
user_solution = fileread('dots_in_circle.m');
assert(isempty(strfind(user_solution,'regexp')));
assert(isempty(strfind(user_solution,'2str')));
assert(isempty(strfind(user_solution,'str2')));
assert(isempty(strfind(user_solution,'interp')));
assert(isempty(strfind(user_solution,'printf')));
assert(isempty(strfind(user_solution,'assert')));

2  Pass 
r = 0;
n_correct = 1;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

3  Pass 
r = 1;
n_correct = 5;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

4  Pass 
r = 2;
n_correct = 13;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

5  Pass 
r = 3;
n_correct = 29;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

6  Pass 
r = 4;
n_correct = 49;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

7  Pass 
r = 5;
n_correct = 81;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

8  Pass 
r = 7.5;
n_correct = 177;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

9  Pass 
r = 10;
n_correct = 317;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

10  Pass 
r = 20;
n_correct = 1257;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

11  Pass 
r = 30;
n_correct = 2821;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

12  Pass 
r = 40;
n_correct = 5025;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

13  Pass 
r = 50;
n_correct = 7845;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

14  Pass 
r = 75;
n_correct = 17665;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

15  Pass 
r = 100;
n_correct = 31417;
assert(isequal(dots_in_circle(r),n_correct))
[Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.]

6280 Solvers
The Hitchhiker's Guide to MATLAB
2874 Solvers
Permute diagonal and antidiagonal
224 Solvers
511 Solvers
548 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!