Best way to calculate elliptical trajectory

2 views (last 30 days)
hal9k
hal9k on 1 Jun 2021
Commented: Adam Danz on 3 Jun 2021
How do I calculate the ellptical trajectory on a spheroid at constant altitude if I know the center of ellipse and boundary points of imaginary rectangle?
% earth ref spheroid
wgs84 = wgs84Ellipsoid;
% Aircraft location
lat_aircraft = 45; %deg
lon_aircraft = 8; %deg
alt_aircraft = 5000; %m
%% Receiver extent
lon_extent = 0.5;
lat_extent = 1;
%% Find boundry points of rectangle, and add center of the location
lat_range = [lat_aircraft - (lat_extent/2), lat_aircraft, lat_aircraft + (lat_extent/2)];
lon_range = [lon_aircraft - (lon_extent/2), lon_aircraft, lon_aircraft + (lon_extent/2)];
latlonPts = [combvec(lat_range, lon_range)]';
geoplot(latlonPts(:,1), latlonPts(:,2),'*')
%% Create elliptical traj at constant altitude

Answers (1)

Adam Danz
Adam Danz on 1 Jun 2021
Edited: Adam Danz on 2 Jun 2021
Existing code
% earth ref spheroid
wgs84 = wgs84Ellipsoid;
% Aircraft location
lat_aircraft = 45; %deg
lon_aircraft = 8; %deg
alt_aircraft = 5000; %m
%% Receiver extent
lon_extent = 0.5;
lat_extent = 1;
%% Find boundry points of rectangle, and add center of the location
lat_range = [lat_aircraft - (lat_extent/2), lat_aircraft, lat_aircraft + (lat_extent/2)];
lon_range = [lon_aircraft - (lon_extent/2), lon_aircraft, lon_aircraft + (lon_extent/2)];
latlonPts = [combvec(lat_range, lon_range)]';
geoplot(latlonPts(:,1), latlonPts(:,2),'*')
Create ellipse within bounding box
%% Create elliptical traj at constant altitude
theta = linspace(0,2*pi) ;
x = lon_extent/2 * cos(theta) + lon_aircraft;
y = lat_extent/2 * sin(theta) + lat_aircraft;
hold on
geoplot(y,x,'r-')
  1 Comment
Adam Danz
Adam Danz on 3 Jun 2021
Note, the simple solution above works when the rectangle is parallel with the axes but does not work with rotated rectangles.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!