Matrix Dimension Must Agree
2 views (last 30 days)
Show older comments
can somebody help me im new at using matlab
this is my code and the error said that "Matrix Dimension Must Agree"
clc
clear
%%deklarasi variabel
n = 377;
f = 3*(10^9);
c = 3*(10^8);
lambda = c/f;
I = 1;
r = 10*lambda;
theta = [0:0.01:2*(pi)];
k = 2*(pi)/lambda;
l = [(5.1)*lambda : 0.01 : (7.1)*lambda];
%% persamaan pola radiasi
Eteta = (i.*n.*I.*exp(-i.*k.*r)/2.*(pi).*r).*((cos((k.*l/2).*cos(theta))-cos(k.*l/2))./sin(theta));
%% persamaan power pattern
rteta = abs(Eteta);
rtetadB = 10*log10(rteta);
Rteta = rtetadB;
%% Plot 2D variabel
h = figure(1);
polarplot(theta,Rteta);
%% proses normalisasi
Rthetanorm = Rteta - min(Rteta);
%% vektor sudut azimuth
Azimuth = [0:0.01:2*(pi)];
%% magnitude ternormalisasi
Rthetanorm(1,1) = 0;
%% matriks vektor baris sudut azimuth
matrix_pi = [];
%% matriks vektor baris sudut elevasi
matrix_theta = [];
%% matriks vektor baris magnitude ternormalisasi
matrix_Rthetanorm = [];
for i = 1:629
matrix_pi(i,:) = Azimuth(1,:);
matrix_theta(:,i) = theta(1,:);
matrix_Rthetanorm(:,i) = Rthetanorm(1,:);
end
%% koordinat cartesian
x = matrix_Rthetanorm.*cos(matrix_theta).*cos(matrix_pi);
y = matrix_Rthetanorm.*cos(matrix_theta).*sin(matrix_pi);
z = matrix_Rthetanorm.*sin(matrix_theta);
%% Plot 3D dari koordinat cartesian
f = figure(2);
mesh(x,y,z);
colorMap=[[0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7]', [0 0 0 0 0.1 0.2 0.3 0.9 0.9 0.9 0.9 0.3 0.2 0.1 0 0 0 0]', [0 0 0 0 0.1 0.2 0.3 0.4 0 0 0.4 0.3 0.2 0.1 0 0 0 0]'];
colormap(colorMap);
colorbar
0 Comments
Answers (3)
David Hill
on 17 Apr 2021
theta = linspace(0,2*(pi),629);
l = linspace((5.1)*lambda,(7.1)*lambda,629);
Azimuth = linspace(0,2*(pi),629);%these all need to be the same size, use linspace
0 Comments
Matt J
on 17 Apr 2021
theta and l do indeed have different lengths, so it is not clear what you are trying to do in your calculation of Eteta.
n = 377;
f = 3*(10^9);
c = 3*(10^8);
lambda = c/f;
I = 1;
r = 10*lambda;
theta = [0:0.01:2*(pi)];
k = 2*(pi)/lambda;
l = [(5.1)*lambda : 0.01 : (7.1)*lambda];
whos theta l
2 Comments
Matt J
on 17 Apr 2021
theta and l do indeed have different lengths, so it is not clear what you are trying to do in your calculation of Eteta.
Walter Roberson
on 17 Apr 2021
clc
clear
%%deklarasi variabel
n = 377;
f = 3*(10^9);
c = 3*(10^8);
lambda = c/f;
I = 1;
r = 10*lambda;
theta = [0:0.01:2*(pi)];
k = 2*(pi)/lambda;
l = [(5.1)*lambda : 0.01 : (7.1)*lambda].'; %only change
%% persamaan pola radiasi
Eteta = (i.*n.*I.*exp(-i.*k.*r)/2.*(pi).*r).*((cos((k.*l/2).*cos(theta))-cos(k.*l/2))./sin(theta));
%% persamaan power pattern
rteta = abs(Eteta);
rtetadB = 10*log10(rteta);
Rteta = rtetadB;
%% Plot 2D variabel
h = figure(1);
polarplot(theta,Rteta);
%% proses normalisasi
Rthetanorm = Rteta - min(Rteta);
%% vektor sudut azimuth
Azimuth = [0:0.01:2*(pi)];
%% magnitude ternormalisasi
Rthetanorm(1,1) = 0;
%% matriks vektor baris sudut azimuth
matrix_pi = [];
%% matriks vektor baris sudut elevasi
matrix_theta = [];
%% matriks vektor baris magnitude ternormalisasi
matrix_Rthetanorm = [];
for i = 1:629
matrix_pi(i,:) = Azimuth(1,:);
matrix_theta(:,i) = theta(1,:);
matrix_Rthetanorm(:,i) = Rthetanorm(1,:);
end
%% koordinat cartesian
x = matrix_Rthetanorm.*cos(matrix_theta).*cos(matrix_pi);
y = matrix_Rthetanorm.*cos(matrix_theta).*sin(matrix_pi);
z = matrix_Rthetanorm.*sin(matrix_theta);
%% Plot 3D dari koordinat cartesian
f = figure(2);
mesh(x,y,z);
colorMap=[[0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7]', [0 0 0 0 0.1 0.2 0.3 0.9 0.9 0.9 0.9 0.3 0.2 0.1 0 0 0 0]', [0 0 0 0 0.1 0.2 0.3 0.4 0 0 0.4 0.3 0.2 0.1 0 0 0 0]'];
colormap(colorMap);
colorbar
2 Comments
Walter Roberson
on 18 Apr 2021
It is already beening made in different figures ? The 2D plot is going into figure 1, and the 3d plot is going into figure 2.
See Also
Categories
Find more on 2-D and 3-D Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!