How to fit to an infinite series function when the independent variable contains an undetermined parameter?
2 views (last 30 days)
Show older comments
qt is a dependent variable; t is an independent variable; qe B h are undetermined parameters.
Procedure code is as follows.
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.53];
plot(x,y,'bo');
hold on
pause(0.1);
beta0=[39,0.002];
% syms n t
% fun=@(beta,t) beta(1)*(1-6/(pi^2)*symsum((1./n.^2).*exp(-beta(2)*(n.^2).*t.^(-h)),n,1,Inf));
% betafit = nlinfit(x,y,fun,beta0);
beta1=beta0;
delta = 1e-8; % desired objective accuracy
R0=Inf; % initial objective function
for K=1:10000
fun=@(beta,t) beta(1)*(1-6/(pi^2)*sum((1./(1:K)'.^2).*exp(-beta(2)*((1:K)'.^2).*t.^(-h)),1));
[betafit,R] = nlinfit(x,y,fun,beta1);
R = sum(R.^2);
if abs(R0-R)<delta
break;
end
beta1=betafit;
R0 = R;
end
plot(x,fun(betafit,x),'.-r');
xlabel('x');
ylabel('y');
legend('experiment','model');
title(strcat('\beta=[',num2str(betafit),'];----stopped at--','K=',num2str(K)));
0 Comments
Accepted Answer
Alan Stevens
on 12 Apr 2021
fminsearch seems to do ok:
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.53];
b0 = [5, 1, -1]; % b = [qe, B, h]
b = fminsearch(@(b) fn(b,x,y), b0);
disp(b)
t = 0:120;
qt = qt_fn(t,b);
plot(x,y,'bo',t,qt), grid
xlabel('t'),ylabel('qt')
function F = fn(b,x,y)
q = qt_fn(x, b);
F = norm(y - q);
end
function qt = qt_fn(t, b)
N = 100;
term = 0;
qt = 1;
err = 1;
n = 1;
while (err>10^-8) & (n<=N)
oldterm = term;
term = -(6/pi^2)*exp(-(b(2)*n^2.*t.^(-b(3))));
qt = term + qt;
n = n+1;
err = abs(term-oldterm);
end
qt = b(1)*qt;
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Probability Distributions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!