Optimization of vectors with optimization toolbox

7 views (last 30 days)
hello, new to optimization toolbox here :)
i wolud like to optimize 2 vectors:
omega (100X1)
T (100X1)
i have 2 constrains on this vectors
-200<omega>200
-60<T<60
H it's a matrix equal to :H = [omega 1 T]
and M = transpose(H)* H;
i wrote my M matrix result alredy.
my code look like this:
omega = optimvar('omega',100,'LowerBound',-200,'UpperBound',200);
T = optimvar('Temperature',100,'LowerBound',-60,'UpperBound',60);
t = transpose(0:1:100-1);
M = [sum(omega.*omega) sum(omega) sum(omega.*T) ; ...
sum(omega) sum(ones(length(omega),1)) sum(T) ;
sum(omega.*T) sum(T) sum(T.*T) ];
i want to optimize omega and T with this two objective functions
1.trace(M)
2.Det(M)
J1 = trace(M);
J2 = det(M);
prob = optimproblem("ObjectiveSense",'maximize');
prob.Objective =J1;
sol = solve(prob)
my questions:
  1. i would like to add 2 more constrains, about domega/dt and for dT/dt. any one have idea how to do that?
  2. when i try to solve this problem, i get :The problem is non-convex. how sould i continue?
  3. when i try to calculate det(M) i get this error : Check for missing argument or incorrect argument data type in call to function 'det'. can i even use this function with optimization varible ?
  7 Comments
eden meirovich
eden meirovich on 21 Dec 2020
i know the solution (i try to max the trace and the det, not minimize).
i just want to get this "easy" one, before i continue to one i don't know

Sign in to comment.

Answers (1)

Matt J
Matt J on 21 Dec 2020
Edited: Matt J on 21 Dec 2020
i would like to add 2 more constrains, about domega/dt and for dT/dt. any one have idea how to do that?
You can use diff() to implement constraints on numerical derivatives, e.g.,
omega = optimvar('omega',100,'LowerBound',-200,'UpperBound',200);
T = optimvar('Temperature',100,'LowerBound',-60,'UpperBound',60);
domega=diff(omega); %derivatives
dT=diff(T);
C.con_domega=lower_domega<=domega & domega<=upper_domega; %bounds on derivatives
C.con_dT=lower_dT<=dT & dT<=upper_dT
As long as all these constraints are linear, you can then use prob2matrices,
to assist in the conversion from the problem-based to the solver-based framework. E.g.,
sol0.omega=omega0; %initial guesses
sol0.T=T0;
prob=prob2matrices({omega,T},'Constraints',C,'sol0',sol0);
prob.x0=reshape(prob.x0,[],2);
prob.solver='fmincon';
prob.fun=@(x) sum(x.^2,'all'); %equivalent to trace M
x1=fmincon(prob);
e = ones(length(omega),1);
prob.fun=@(x) det([x,e].' * [x,e]);
x2=fmincon(prob);

Categories

Find more on Get Started with Optimization Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!