Clear Filters
Clear Filters

Info

This question is closed. Reopen it to edit or answer.

Obtaining an analytical function of regression and Understanding the reversing concept of the normalisation (of input data) automatically done by Matlab Neural Network.

2 views (last 30 days)
I have a problem in understanding the reversing of the normalisation (of input data) automatically done by Matlab. I have followed the questions/answers presented in matworks.com website (using repmap, mapping and reverse mapping functions) but they does not work. if you can help me, this is my code:
entree=xlsread('........\database.xlsx',1); % inputsize=[24960 8]
sortie=xlsread('........\database.xlsx',2); % outputsize=[24960 1]
n=6 ;
net=fitnet(n);
[net,TR]=train(net,entree',sortie');
%evaluation of the analytical function
x=[ 1100 , 1155 , 10 , 1 , 0 , 0.7 , 343.7508 , 1.00017 ];
b1 = net.b {1}; %size=[4 1]
b2 = net.b {2}; %size=[1 1]
IW = net.IW {1,1}; %size=[4 8]
LW = net.LW {2,1}; %size=[1 4]
a1=IW*x'+b1;
y=purelin(LW*(tansig(a1))+b2); % comparison with net(x')~ 10.37error=abs(net(x')-y);
  1 Comment
Mohamed El Ibrahimi
Mohamed El Ibrahimi on 25 Jun 2020
Edited: Mohamed El Ibrahimi on 25 Jun 2020
I have found the response to my question, we can find the right solution by mapping and reverse mapping
entree=xlsread('O:\Stage\database.xlsx',1);
sortie=xlsread('O:\Stage\database.xlsx',2);
entree=entree';
sortie=sortie';
N=length(sortie);
net=fitnet(n);
net.numLayers;
[net,TR]=train(net,entree,sortie,'UseParallel','yes');
%%%%%%%% do and extract Mapping settings %%%%
[entree_map,entree_setMap] = mapminmax (entree);
[sortie_map,sortie_setMap] = mapminmax (sortie);
%%% apply mapping setting + regression Modele test + mapping reverse %%%%%%%%%%%%%%%%
e=[1155 10 0.7 1.00017];
emap= mapminmax ('apply',e',entree_setMap);
b1 = net.b {1};
b2 = net.b {2};
IW = net.IW {1,1};
LW = net.LW {2,1};
B1=repmat(b1,1,N);
B2=repmat(b2,1,N);
a1=IW*emap+b1
h1=tansig(a1);
a2=LW*h1+b2;
h3_map=purelin(a2);
h= mapminmax('reverse',h3_map,sortie_setMap)
y=net(e')
, but it is a nother way to do it, and I think is the best:

Answers (0)

This question is closed.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!