can anyone offer control of state space system using Iterative Learning Control in command window in MATALB

2 views (last 30 days)
can anyone offer control of state space system using Iterative Learning Control in command window in MATALB
  4 Comments
Mohamed Eshag
Mohamed Eshag on 1 Dec 2018
Edited: Mohamed Eshag on 1 Dec 2018
Walter Roberson: Yeah, to distinguish from a Simulink solution, and ususally I like to design a control system in command window better than simulink

Sign in to comment.

Accepted Answer

Mark Sherstan
Mark Sherstan on 7 Dec 2018
Here is an example that should push you in the correct direction. I havent completed it as I dont know what your reference signal is or if you need to add noise, disturbances, pure time delay, etc... but it is basically complete. Refer to the comments to follow what is going on.
function [ ] = ILC()
%[Ad Bd Cd Dd] = ssdata(sys);
Ad = [0 1 0; 3 0 1; 0 1 0];
Bd = [1; 1; 3];
Cd = [1 1 1];
Dd = [0];
% Set Ts, initial condition x0, time range t, pure time delay n0, relative
% degree r, and matrix size N
Ts = 1;
x0 = 0;
t = 0:Ts:60;
n0 = 0;
r = 1;
N = length(t);
% Define input vector U and reference J
U = [zeros(1,15) 10*ones(1,15) zeros(1,15) 10*ones(1,16)];
Rj = [zeros(1,15) 20*ones(1,15) zeros(1,15) 20*ones(1,16)]';
% G0 not formulated as initial condition is 0
% Formulate G
Gvec = zeros(N,1);
rvec = ((r-1):(N-n0-1))';
for ii = 1:length(rvec)
ApowVec = Ad^rvec(ii);
Gvec(ii) = Cd*ApowVec*Bd;
end
G = tril(toeplitz(Gvec));
% Set up ILC
jmax = 25;
l0 = 0.95;
q0 = 1;
L = l0 * eye(N,N);
Q = q0 * eye(N,N);
I = eye(N);
Uj = zeros(N,1); Ujold = Uj;
Ej = zeros(N,1); Ejold = Ej;
e2k = zeros(jmax,1);
% Run ILC and plot the response for each iteration
for ii = 1:jmax
Uj = Q*Ujold + L*Ejold;
Yj = G*Uj;
Ej = Rj - Yj; Ej(1) = 0;
Ejold = Ej;
Ujold = Uj;
plotter(ii,t,Ej,Yj,Uj,Rj,U)
e2k(ii) = Ej'*Ej;
end
end
function [] = plotter(ii,t,Ej,Yj,Uj,Rj,U)
figure(1)
% Plot the error Ej of the current itteration
subplot(1,3,1);
plot(t,Ej,'LineWidth',1.5);
title('Error, Ej','FontSize',16);
ylabel('Error Response','FontSize',16);
% Plot the input Uj of the current itteration
subplot(1,3,2);
plot(t,Uj,t,U,'-k','LineWidth',1.5);
title({['Iteration: ', num2str(ii)],'Input, Uj'},'FontSize',16);
xlabel('Time (s)','FontSize',16);
ylabel('Input Response','FontSize',16);
% Plot the output Yj of the current itteration
subplot(1,3,3);
plot(t,Yj,t,Rj,'-k','LineWidth',1.5);
title('Output, Yj','FontSize',16);
ylabel('Output Response','FontSize',16);
pause(0.1);
end
  2 Comments
Mohamed Eshag
Mohamed Eshag on 12 Dec 2018
Edited: Mohamed Eshag on 12 Dec 2018
Thanks Mr.Mark for your feedback. It will be usefull for me. please if you have good book in this area, could you send it yo me here ;( eshag10@yahoo.com). because I have two types of disturbances in my system.
mazin alseadi
mazin alseadi on 3 Nov 2020
Dear Mohamed Eshag
Have you developed or did this codes to be worked successfuly ? if you did, so please could you kindly send me this files ?
with respect and appreciate

Sign in to comment.

More Answers (0)

Categories

Find more on Control System Toolbox in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!