Rice grain chalky area

1 view (last 30 days)
Evolution
Evolution on 12 Mar 2016
Hello I would like to know how we can calculate chalky/white area in a rice grain? Also i used following matlab code given on matworks site to calculate area of rice grain.Even after removing all small areas with less than 50 pixels it is showing grains with area 1 which is not visible on imshow.Please let me know the solution of these 2 problems. Thanks a lot I=imread('1_1.jpg'); imshow(I) background = imopen(I,strel('disk',15)); I2 = I - background; imshow(I2) %I2=rgb2gray(I2); I3 = imadjust(I2); figure imshow(I3); level = graythresh(I3); bw = im2bw(I3,level); bw = bwareaopen(bw, 30); figure imshow(bw) cc = bwconncomp(bw, 4) cc.NumObjects grain = false(size(bw)); grain(cc.PixelIdxList{50}) = true; figure imshow(grain); graindata = regionprops(cc, 'basic');
grain_areas = [graindata.Area]; [min_area, idx] = min(grain_areas); grain = false(size(bw)); grain(cc.PixelIdxList{idx}) = true; imshow(grain);
  2 Comments
Image Analyst
Image Analyst on 12 Mar 2016
There is nothing we can do until you read this and read this and attach your image with the green and brown frame icon.
Evolution
Evolution on 13 Mar 2016
Edited: Evolution on 13 Mar 2016
Thank you very much for the suggestion.It was careless of me just to copy paste the matlab code without formatting .
I would appreciate if you could give your feedback on the new uploaded question.

Sign in to comment.

Answers (1)

Evolution
Evolution on 13 Mar 2016
Hello
I would like to know how we can calculate chalky/white area in a rice grain?
Also i used following matlab code given on Mathworks site to calculate area of rice grain scanned through a scanner.
Even after removing all small objects having area with less than 50 pixels it is showing grains with area 1 which is not visible on imshow.
Please let me know the solution of these 2 problems. Thank you very much in advance .
if true
I=imread('1_1.jpg');
imshow(I)
background = imopen(I,strel('disk',15));
I2 = I - background;
imshow(I2)
I2=rgb2gray(I2);
I3 = imadjust(I2);
figure
imshow(I3);
level = graythresh(I3);
bw = im2bw(I3,level);
bw = bwareaopen(bw, 30);
figure imshow(bw)
cc = bwconncomp(bw, 4)
cc.NumObjects grain = false(size(bw));
grain(cc.PixelIdxList{50}) = true;
figure imshow(grain);
graindata = regionprops(cc, 'basic');
grain_areas = [graindata.Area];
[min_area, idx] = min(grain_areas);
grain = false(size(bw));
grain(cc.PixelIdxList{idx}) = true;
imshow(grain);
end
  2 Comments
Evolution
Evolution on 16 Mar 2016
Any one please?
Asha Deepthi Kothapalli
Asha Deepthi Kothapalli on 16 Feb 2022
May I know if this is solved sir/mam? I am currently working on the same but I get the same category according the percentage of chalkiness I have calculated for both chalky rice and standard rice. I took help from a website but couldn't find a way to solve it. Can you please help me out?
clear
close all
tic; % Start timer.
captionFontSize = 14;
%% Load the file
fullFileName = "archive\train\Chalky Rice\914.jpg";
%% Convert RGB2Grayscale
originalImage = imread(fullFileName);
originalImage = rgb2gray(originalImage);
subplot(2, 4, 1);
imshow(originalImage);
%% Explore the image/data using histogram:
[pixelCount, grayLevels] = imhist(originalImage);
subplot(2, 4, 2);
bar(pixelCount);
xlim([0 grayLevels(end)]); % Scale x axis manually.
grid on;
thresholdValue = 90; % Choose the threshold value in roder to mask out the background noise.
% Show the threshold as a vertical red bar on the histogram.
hold on;
maxYValue = ylim;
line([thresholdValue, thresholdValue], maxYValue, 'Color', 'r');
annotationText = sprintf('Thresholded at %d gray levels', thresholdValue);
text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 'FontSize', 10, 'Color', [0 .5 0]);
text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 'Background', 'FontSize', 10, 'Color', [0 0 .5]);
text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 'Foreground', 'FontSize', 10, 'Color', [0 0 .5]);
%% Get and show binary image
binaryImage = originalImage > thresholdValue;
binaryImage = imfill(binaryImage, 'holes');
% Display the binary image.
subplot(2, 4, 3);
imshow(binaryImage);
title('Binary Image', 'FontSize', captionFontSize);
%% Maskout the background noise
MaskedImage = originalImage;
MaskedImage(~binaryImage) = 0;
subplot(2, 4, 4);
imshow(MaskedImage);
title('Masked Image', 'FontSize', captionFontSize);
%% Get the centroid, mean intensity, permieter of the whole seed etc
blobMeasurements = regionprops(binaryImage, originalImage, 'all');
%% Calculate the chalkiness by first exploring the histogram
[pixelCount_1, grayLevels_1] = imhist(MaskedImage);
subplot(2, 4, 5);
bar(pixelCount_1);
xlim([0 grayLevels_1(end)]); % Scale x axis manually.
grid on;
thresholdValue_1 = 180; %% Choose the threshold that segments the chalkiness
binary_MaskedImage = MaskedImage > thresholdValue_1;
binary_MaskedImage = imfill(binary_MaskedImage, 'holes');
% % % Show the threshold as a vertical red bar on the histogram.
hold on;
maxYValue_1 = ylim;
line([thresholdValue_1, thresholdValue_1], maxYValue_1, 'Color', 'r');
annotationText = sprintf('Thresholded at %d gray levels', thresholdValue_1);
text(double(thresholdValue_1 + 5), double(0.5 * maxYValue_1(2)), annotationText, 'FontSize', 10, 'Color', [0 .5 0]);
text(double(thresholdValue_1 - 70), double(0.94 * maxYValue_1(2)), 'Background', 'FontSize', 10, 'Color', [0 0 .5]);
text(double(thresholdValue_1 + 50), double(0.94 * maxYValue_1(2)), 'Foreground', 'FontSize', 10, 'Color', [0 0 .5]);
%% Display the binary Masked image.
subplot(2, 4, 6);
imshow(binary_MaskedImage);
title('Binary Masked Image', 'FontSize', captionFontSize);
%% Get the centroid, mean intensity, permieter of the chlky area
blobMeasurements_subblobs = regionprops(binary_MaskedImage, originalImage, 'all');
% Plot the borders of all the seeds on the original grayscale image using the coordinates returned by bwboundaries.
subplot(2, 4, 7);
imshow(originalImage);
axis image; % Make sure image is not artificially stretched because of screen's aspect ratio.
hold on;
boundaries = bwboundaries(binaryImage);
numberOfBoundaries = size(boundaries, 1);
for k = 1 : numberOfBoundaries
thisBoundary = boundaries{k};
plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2);
end
boundaries_Masked = bwboundaries(binary_MaskedImage);
numberOfBoundaries_Masked = size(boundaries_Masked, 1);
for k = 1 : numberOfBoundaries_Masked
thisBoundary_Masked = boundaries_Masked{k};
plot(thisBoundary_Masked(:,2), thisBoundary_Masked(:,1), 'b', 'LineWidth', 2);
end
hold off;
%% Overlay the chalky area on the original image
subplot(2, 4, 8);
imshow(labeloverlay(originalImage,binary_MaskedImage))
title('Chalkiness')
%% Chalkiness
Sum_Subblobs_Perimeter = sum([blobMeasurements_subblobs(1:end).Perimeter]);
Sum_Blobs_Perimeter = sum([blobMeasurements(1:end).Perimeter]);
Percentage_Chalkiness=(Sum_Subblobs_Perimeter/Sum_Blobs_Perimeter)*100;
if Percentage_Chalkiness<10
fprintf('<strong> This belongs to category 1 </strong>\n')
elseif (Percentage_Chalkiness>10)&&(Percentage_Chalkiness<25)
fprintf('<strong> This belongs to category 2 </strong>\n')
elseif (Percentage_Chalkiness>25)&&(Percentage_Chalkiness<50)
fprintf('<strong> This belongs to category 3 </strong>\n')
elseif (Percentage_Chalkiness>50)&&(Percentage_Chalkiness<75)
fprintf('<strong> This belongs to category 4 </strong>\n')
elseif (Percentage_Chalkiness>75)&&(Percentage_Chalkiness<100)
fprintf('<strong> This belongs to category 5 </strong>\n')
end
toc

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!