How can I the show the solution/results in table form?

6 views (last 30 days)
Hi! I'm doing a Simpsons 1/3 rule Numerical Methods, How can I show the results each solution in table form before the answer?
Example:
x f(x) (Odd or Even) f(x)*(Odd or Even)
-2.00000 0.05399 1.00000 0.05399
-1.55000 0.12001 4.00000 0.48004
-1.10000 0.21785 2.00000 0.43570
-0.65000 0.32297 4.00000 1.29188
-0.20000 0.39104 2.00000 0.78208
0.25000 0.38667 4.00000 1.54668
0.70000 0.31225 2.00000 0.62450
1.15000 0.20594 4.00000 0.82376
1.60000 0.11092 1.00000 0.11092
summation of [f(xi)* (odd or even)] 6.14955
Answer = Sq. Unit
Here;s my code:
eqn= 0.2+(25*x)-(200*x^2)+(675*x^3)-(900*x^4)+(400*x^5)
a= 0
b= 0.8
n= 8
clear
clc
format short
P=input ('Enter the Equation: ','s');
f=inline(P)
a=input ('Enter the Lower Value Limit: ')
b=input ('Enter the Upper Value Limit: ')
disp('Number of Segments "n" should be Divisible by 2!')
n=input ('Enter the Number of Segments: ')
h=round((b-a)/n,4)
odd=0;
even=0;
for i=1:2:n-1
x=round(a+i*h,4);
odd=round(odd+f(x),4);
end
for i=2:2:n-2
x=round(a+i*h,4);
even=round(even+f(x),4);
end
interc(i,:)=[x,f(x)]
I=round((h/3)*(f(a)+(4*odd)+(2*even)+f(b)),4);
fprintf('Integrated Value is %0.4f Sq. Unit', I)

Answers (1)

Benjamin Kraus
Benjamin Kraus on 2 Aug 2022
There is still some polish you probably need to make, but here is one approach to displaying your results in a table:
a = 0;
b = 0.8;
n = 8;
f = @(x) 0.2+(25*x)-(200*x^2)+(675*x^3)-(900*x^4)+(400*x^5);
h = round((b-a)/n,4);
odd = 0;
even = 0;
oddOrEven = NaN(n-1,1);
x = NaN(n-1,1);
interc = NaN(n-1,1);
for i = 1:2:n-1
x(i) = round(a+i*h,4);
interc(i) = f(x(i));
odd = round(odd+interc(i),4);
oddOrEven(i) = odd;
end
for i = 2:2:n-2
x(i) = round(a+i*h,4);
interc(i) = f(x(i));
even = round(even+interc(i),4);
oddOrEven(i) = even;
end
I = round((h/3)*(f(a)+(4*odd)+(2*even)+f(b)),4);
results = table(x, interc, oddOrEven, interc.*oddOrEven, ...
'VariableNames',{'x','f(x)','(Odd or Even)','f(x)*(Odd or Even)'});
disp(results)
x f(x) (Odd or Even) f(x)*(Odd or Even) ___ _____ _____________ __________________ 0.1 1.289 1.289 1.6615 0.2 1.288 1.288 1.6589 0.3 1.607 2.896 4.6539 0.4 2.456 3.744 9.1953 0.5 3.325 6.221 20.685 0.6 3.464 7.208 24.969 0.7 2.363 8.584 20.284
fprintf('Integrated Value is %0.4f Sq. Unit\n', I)
Integrated Value is 1.6395 Sq. Unit
  2 Comments
Benjamin Kraus
Benjamin Kraus on 2 Aug 2022
I don't know the specifics of the Simpsons 1/3 Rule, so I'll leave the details of the algorithm up to you.

Sign in to comment.

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!