This example shows how to optimize the strategy for a single stock by minimizing trading costs using transaction cost analysis from the Kissell Research Group. The optimization minimizes trading costs associated with the trade schedule trading strategy and a specified risk aversion parameter Lambda. The trading cost minimization is expressed as
where trading costs
are market impact MI, price appreciation PA,
and timing risk TR. For details, see marketImpact
, priceAppreciation
,
and timingRisk
.
This example requires an Optimization Toolbox™ license. For background information, see Optimization Theory Overview (Optimization Toolbox).
Here, you can optimize the trade schedule trade strategy. The optimization finds a local minimum for this expression. For ways to search for the global minimum, see Local vs. Global Optima (Optimization Toolbox). To optimize percentage of volume and trade time strategies, see Optimize Percentage of Volume Trading Strategy and Optimize Trade Time Trading Strategy.
To access the example code, enter edit KRGSingleStockOptimizationExample.m
at
the command line.
Retrieve the market-impact data from the Kissell Research Group
FTP site. Connect to the FTP site using the ftp
function
with a user name and password. Navigate to the MI_Parameters
folder
and retrieve the market-impact data in the MI_Encrypted_Parameters.csv
file. miData
contains
the encrypted market-impact date, code, and parameters.
f = ftp('ftp.kissellresearch.com','username','pwd'); mget(f,'MI_Encrypted_Parameters.csv'); close(f) miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ... ',','ReadRowNames',false,'ReadVariableNames',true);
Create a Kissell Research Group transaction cost analysis object
k
.
k = krg(miData);
The structure tradeData
contains data for
a single stock. Use a structure or table to define this data. The
fields are:
Number of shares
Average daily volume
Volatility
Stock price
Alpha estimate
tradeData.Shares = 100000; tradeData.ADV = 1000000; tradeData.Volatility = 0.25; tradeData.Price = 35; tradeData.Alpha_bp = 50;
Define the number of trades and the volume per trade for
the initial strategy. The fields VolumeProfile
and TradeSchedule
define
the initial trade schedule trade strategy.
numIntervals = 26; tradeData.VolumeProfile = ones(1,numIntervals) * ... tradeData.ADV/numIntervals; tradeData.TradeSchedule = ones(1,numIntervals) .* ... (tradeData.Shares./numIntervals);
Define risk aversion level Lambda
. Set Lambda
from
0 to Inf
.
Lambda = 1;
Define lower LB
and upper UB
bounds
of shares traded per interval for optimization.
LB = zeros(1,numIntervals); UB = ones(1,numIntervals) .* tradeData.Shares;
Specify constraints Aeq
and Beq
to
denote that shares traded in the trade schedule must match the total
number of shares.
Aeq = ones(1,numIntervals); Beq = tradeData.Shares;
Define the maximum number of function evaluations and
iterations for optimization. Set 'MaxFunEvals'
and 'MaxIter'
to
large values so that the optimization can iterate many times to find
a local minimum.
options = optimoptions('fmincon','MaxFunEvals',100000,'MaxIter',100000);
Define the function handle fun
for
the objective function. To access the code for this function, enter edit
krgSingleStockOptimizer.m
.
fun = @(tradeschedule)krgSingleStockOptimizer(tradeschedule,k, ...
tradeData,Lambda);
Minimize the trading costs for the trade schedule trade strategy. fmincon
finds
the optimal value for the trade schedule trade strategy based on the
lower and upper bound values. It does this by finding a local minimum
for the trading cost.
[tradeData.TradeSchedule,totalcost,exitflag] = fmincon(fun, ...
tradeData.TradeSchedule,[],[],Aeq,Beq,LB,UB,[],options);
To check whether fmincon
found a
local minimum, display the reason why the function stopped.
exitflag
exitflag = 1.00
fmincon
returns 1
when
it finds a local minimum. For details, see exitflag
(Optimization Toolbox).
Display the optimized trade strategy tradeData.TradeSchedule
.
tradeData.TradeSchedule
ans = Columns 1 through 5 35563.33 18220.14 11688.59 8256.81 6057.39 ...
Estimate trading costs tradeScheduleCosts
using
the optimized trade strategy.
mi = marketImpact(k,tradeData); pa = priceAppreciation(k,tradeData); tr = timingRisk(k,tradeData); tradeScheduleCosts = [totalcost mi pa tr];
Display trading costs.
tradeScheduleCosts
tradeScheduleCosts = 97.32 47.66 6.75 42.91
The trading costs are:
Total cost
Market impact
Price appreciation
Timing risk
For details about the preceding calculations, contact the Kissell Research Group.
[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University, May 2006.
[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management. Cambridge, MA: Elsevier/Academic Press, 2013.
[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Cambridge, MA: Elsevier/Academic Press, 2013.
[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY: AMACOM, Inc., 2003.
krg
| marketImpact
| priceAppreciation
| timingRisk
| fmincon
(Optimization Toolbox) | optimoptions
(Optimization Toolbox)