Documentation

Differences Between MATLAB and MuPAD Syntax

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

To convert a MuPAD notebook file to a MATLAB live script file, see convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality, although there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

There are several differences between MATLAB and MuPAD syntax. Be aware of which interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions evalin(symengine,...) and feval(symengine,...), which use MuPAD syntax.

• Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every expression entered in a MuPAD notebook is assumed to be a combination of symbolic variables unless otherwise defined. This means that you must be especially careful when working in MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in MATLAB and MuPAD syntax.

Common Tasks in MATLAB and MuPAD Syntax

Assignment:==
List variablesanames(All, User)whos
Numerical value of expressionfloat(expression)double(expression)
Suppress output:;
Enter matrixmatrix([[x11,x12,x13], [x21,x22,x23]])[x11,x12,x13; x21,x22,x23]
Translate MuPAD set{a,b,c}unique([1 2 3])
Auto-completionCtrl+space barTab
Equality, inequality comparison=, <>==, ~=

The next table lists differences between MATLAB expressions and MuPAD expressions.

MATLAB vs. MuPAD Expressions

infinityInf
PIpi
Ii
undefinedNaN
truncfix
arcsin, arccos etc.asin, acos etc.
numeric::intvpaintegral
normalsimplifyFraction
besselJ, besselY, besselI, besselKbesselj, bessely, besseli, besselk
lambertWlambertw
Si, Cisinint, cosint
EULEReulergamma
conjugateconj
CATALANcatalan

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox™ counterpart.

Symbolic Math Toolbox DefinitionMuPAD Definition
Exponential integral

expint(x) = –Ei(–x) =

Ei(1, x).

$\text{Ei}\left(n,x\right)=\underset{1}{\overset{\infty }{\int }}\frac{\mathrm{exp}\left(-xt\right)}{{t}^{n}}\text{ }dt.$

The definitions of Ei extend to the complex plane, with a branch cut along the negative real axis.

Mathematical Modeling with Symbolic Math Toolbox

Get examples and videos