Main Content

This example shows the basics of working with spmd statements, and how they provide an interactive means of performing parallel computations. We do this by performing relatively simple computations to approximate pi.

Related Documentation:

`spmd`

in the Parallel Computing Toolbox™ User's Guide

Related Examples:

The code shown in this example can be found in this function:

```
function paralleldemo_quadpi_mpi
```

We intend to use the fact that

to approximate pi by approximating the integral on the left.

We intend to have the parallel pool perform the calculations in parallel, and to use the `spmd`

keyword to mark the parallel blocks of code. We first look at the size of the parallel pool that is currently open.

p = gcp; p.NumWorkers

ans = 12

We approximate pi by the numerical integral of `4/(1 + x^2)`

from 0 to 1.

```
type pctdemo_aux_quadpi.m
```

function y = pctdemo_aux_quadpi(x) %PCTDEMO_AUX_QUADPI Return data to approximate pi. % Helper function used to approximate pi. This is the derivative % of 4*atan(x). % Copyright 2008 The MathWorks, Inc. y = 4./(1 + x.^2);

We divide the work between the workers (labs) by having each worker calculate the integral of the function over a subinterval of [0, 1] as shown in the picture.

We define the variables `a`

and `b`

on all the workers, but let their values depend on `labindex`

so that the intervals [a, b] correspond to the subintervals shown in the figure. We then verify that the intervals are correct. Note that the code in the body of the spmd statement is executed in parallel on all the workers in the parallel pool.

spmd a = (labindex - 1)/numlabs; b = labindex/numlabs; fprintf('Subinterval: [%-4g, %-4g]\n', a, b); end

Lab 1: Subinterval: [0 , 0.0833333] Lab 2: Subinterval: [0.0833333, 0.166667] Lab 3: Subinterval: [0.166667, 0.25] Lab 4: Subinterval: [0.25, 0.333333] Lab 5: Subinterval: [0.333333, 0.416667] Lab 6: Subinterval: [0.416667, 0.5 ] Lab 7: Subinterval: [0.5 , 0.583333] Lab 8: Subinterval: [0.583333, 0.666667] Lab 9: Subinterval: [0.666667, 0.75] Lab 10: Subinterval: [0.75, 0.833333] Lab 11: Subinterval: [0.833333, 0.916667] Lab 12: Subinterval: [0.916667, 1 ]

We let all the workers now use a MATLAB quadrature method to approximate each integral. They all operate on the same function, but on the different subintervals of [0,1] shown in the figure above.

spmd myIntegral = integral(@pctdemo_aux_quadpi, a, b); fprintf('Subinterval: [%-4g, %-4g] Integral: %4g\n', ... a, b, myIntegral); end

Lab 1: Subinterval: [0 , 0.0833333] Integral: 0.332565 Lab 2: Subinterval: [0.0833333, 0.166667] Integral: 0.32803 Lab 3: Subinterval: [0.166667, 0.25] Integral: 0.31932 Lab 4: Subinterval: [0.25, 0.333333] Integral: 0.307088 Lab 5: Subinterval: [0.333333, 0.416667] Integral: 0.292162 Lab 6: Subinterval: [0.416667, 0.5 ] Integral: 0.275426 Lab 7: Subinterval: [0.5 , 0.583333] Integral: 0.257707 Lab 8: Subinterval: [0.583333, 0.666667] Integral: 0.239713 Lab 9: Subinterval: [0.666667, 0.75] Integral: 0.221994 Lab 10: Subinterval: [0.75, 0.833333] Integral: 0.204949 Lab 11: Subinterval: [0.833333, 0.916667] Integral: 0.188836 Lab 12: Subinterval: [0.916667, 1 ] Integral: 0.173804

The workers have all calculated their portions of the integral of the function, and we add the results together to form the entire integral over [0, 1]. We use the `gplus`

function to add `myIntegral`

across all the workers and return the sum on all the workers.

spmd piApprox = gplus(myIntegral); end

Since the variable `piApprox`

was assigned to inside an spmd statement, it is accessible on the client as a Composite. Composite objects resemble cell arrays with one element for each worker. Indexing into a Composite brings back the corresponding value from the worker to the client.

approx1 = piApprox{1}; % 1st element holds value on worker 1. fprintf('pi : %.18f\n', pi); fprintf('Approximation: %.18f\n', approx1); fprintf('Error : %g\n', abs(pi - approx1))

pi : 3.141592653589793100 Approximation: 3.141592653589792700 Error : 4.44089e-16