This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Simulate Responses Using filter

Illustrate the relationship between simulate and filter by estimating a 4-dimensional VAR(2) model of the four response series in Johansen's Danish data set. Simulate a single path of responses using the fitted model and the historical data as initial values, and then filter a random set of Gaussian disturbances through the estimated model using the same presample responses.

Load Johansen's Danish economic data.

load Data_JDanish

For details on the variables, enter Description.

Create a default 4-D VAR(2) model.

Mdl = varm(4,2);

Estimate the VAR(2) model using the entire data set.

EstMdl = estimate(Mdl,Data);

When reproducing the results of simulate and filter, it is important to take these actions.

  • Set the same random number seed using rng.

  • Specify the same presample response data using the 'Y0' name-value pair argument.

Set the default random seed. Simulate 100 observations by passing the estimated model to simulate. Specify the entire data set as the presample.

rng default
YSim = simulate(EstMdl,100,'Y0',Data);

YSim is a 100-by-4 matrix of simulated responses. Columns correspond to the columns of the variables in Data.

Set the default random seed. Simulate 4 series of 100 observations from the standard Gaussian distribution.

rng default
Z = randn(100,4);

Filter the Gaussian values through the estimated model. Specify the entire data set as the presample.

YFilter = filter(EstMdl,Z,'Y0',Data);

YFilter is a 100-by-4 matrix of simulated responses. Columns correspond to the columns of the variables in the data Data. Before filtering the disturbances, filter scales Z by the lower triangular Cholesky factor of the model covariance in EstMdl.Covariance.

Compare the resulting responses between filter and simulate.

(YSim - YFilter)'*(YSim - YFilter)
ans = 4×4

     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0

The results are identical.

See Also

Objects

Functions

Related Topics