Specify Parallel Computing Toolbox Profile in Java Application
This example shows how to use the MATLAB® Runtime User Data Interface to specify the profile of a Parallel Computing Toolbox™ cluster in a Java® application.
For more details, see Using MATLAB Runtime User Data Interface.
Step 1: Write Parallel Computing Toolbox Code
Create
sample_pct.m
in MATLAB.This example code uses the cluster defined in the default profile for Parallel Computing Toolbox.
function speedup = sample_pct (n) warning off all; tic if(ischar(n)) n=str2double(n); end for ii = 1:n (cov(sin(magic(n)+rand(n,n)))); end time1 =toc; parpool; tic parfor ii = 1:n (cov(sin(magic(n)+rand(n,n)))); end time2 =toc; disp(['Normal loop time: ' num2str(time1) ... ', parallel loop time: ' num2str(time2) ]); disp(['parallel speedup: ' num2str(1/(time2/time1)) ... ' times faster than normal']); delete(gcp); disp('done'); speedup = (time1/time2);
Run the function with the input
400
.a = sample_pct(400)
The following is an example of the output, assuming the default profile is set to
local
:Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 6). Normal loop time: 2.5651, parallel loop time: 1.6371 parallel speedup: 1.5668 times faster than normal Parallel pool using the 'local' profile is shutting down. done ans = 1.5668
Step 2: Set Parallel Computing Toolbox Profile
To access the MATLAB Runtime User Data interface using a Java package built with MATLAB
Compiler SDK™, you must set mcruserdata
directly from MATLAB. There is no Java API to access mcruserdata
as there is for C and C++
applications built with MATLAB
Compiler SDK.
To set the mcruserdata
from MATLAB, create an init
function. This separate MATLAB function uses setmcruserdata
to set the
Parallel Computing Toolbox profile once. You then call your other functions to utilize the
Parallel Computing Toolbox.
Create the following init_sample_pct
function:
function init_sample_pct % Set the Parallel Computing Toolbox Profile: if(isdeployed) % Let the USER select the cluster profile. [profile, profpath] = uigetfile('*.mlsettings'); setmcruserdata('ParallelProfile', fullfile(profpath, profile)); end
To export an existing profile to an .mlsettings
file, use the
parallel.exportProfile
(Parallel Computing Toolbox) function. For
example,
parallel.exportProfile('local','mylocalsettings');
Tip
If you need to change your profile in the application, use parallel.importProfile
(Parallel Computing Toolbox) and parallel.defaultClusterProfile
(Parallel Computing Toolbox). For more information, see Discover Clusters and Use Cluster Profiles (Parallel Computing Toolbox).
Step 3: Compile Your Code into Java Package
Build the Java package with the Library Compiler app or compiler.build.javaPackage
.
Use the following information for your project:
Package Name | parallelComponent |
Class Name | PctClass |
Files to Compile | sample_pct.m and
init_pct_sample.m |
For example, if you are using compiler.build.javaPackage
,
type:
buildResults = compiler.build.javaPackage( ... {'sample_pct.m','init_sample_pct.m'}, ... 'PackageName','parallelComponent','ClassName','PctClass');
For more details, see the instructions in Generate Java Package and Build Java Application.
Note
If you are using the GPU feature of Parallel Computing Toolbox, you must manually add the PTX and CU files.
If you are using the Library Compiler app, click Add files/directories on the Build tab.
If you are using a
compiler.build
function, use theAdditionalFiles
option.If you are using the
mcc
command, use the-a
option.
Step 4: Write Java Application
Write source code for a Java application that accesses the MATLAB functions. Save this code as JavaParallelClass.java
in
the folder that contains the generated parallelComponent.jar
package.
A sample application for this example is provided below.
import com.mathworks.toolbox.javabuilder.*;
import parallelComponent.*;
public class JavaParallelClass
{
public static void main(String[] args)
{
MWArray A = null;
PctClass C = null;
Object[] B = null;
try
{
C = new PctClass();
/* Set up the runtime with Parallel Data */
C.init_sample_pct();
A = new MWNumericArray(400);
B = C.sample_pct(1, A);
System.out.println("The speed up was: " + B[0]);
}
catch (Exception e)
{
System.out.println("The error is " + e.toString());
}
finally
{
MWArray.disposeArray(A);
C.dispose();
}
}
}
Compile and Run Application
Compile your Java application using an IDE or at the command prompt.
On Windows®, execute the following command:
javac -classpath "
matlabroot
\toolbox\javabuilder\jar\javabuilder.jar";.\parallelComponent.jar JavaParallelClass.javaOn UNIX®, execute the following command:
javac -classpath "
matlabroot
/toolbox/javabuilder/jar/javabuilder.jar":./parallelComponent.jar JavaParallelClass.java
Replace
with the path to
your MATLAB or MATLAB Runtime installation folder. For example, on Windows, the default path is matlabroot
C:\Program
Files\MATLAB\R2024a
.
Run the JavaParallelClass
application.
On Windows, execute the following command:
java -classpath .;"
matlabroot
\toolbox\javabuilder\jar\javabuilder.jar";.\parallelComponent.jar JavaParallelClassOn UNIX, execute the following command:
java -classpath .:"
matlabroot
/toolbox/javabuilder/jar/javabuilder.jar":./parallelComponent.jar JavaParallelClass
Note
If you are running the application on the Mac 64-bit platform, you must add the -d64
flag in the
java
command.
The JavaParallelClass
application prompts you to select the
cluster profile to use. After you select the .mlsettings
file, the
application displays output similar to the following:
Starting parallel pool (parpool) using the 'local_mcruserdata' profile ... Connected to the parallel pool (number of workers: 6). Normal loop time: 2.428, parallel loop time: 1.6515 parallel speedup: 1.4701 times faster than normal Parallel pool using the 'local_mcruserdata' profile is shutting down. done The speed up was: 1.4701
See Also
getmcruserdata
| setmcruserdata