Documentation

algdeintrlv

Restore ordering of symbols using algebraically derived permutation table

Syntax

deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
deintrlvd = algdeintrlv(data,num,'welch-costas',alph)

Description

deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h) restores the original ordering of the elements in data using a permutation table that is algebraically derived using the Takeshita-Costello method. num is the number of elements in data if data is a vector, or the number of rows of data if data is a matrix with multiple columns. In the Takeshita-Costello method, num must be a power of 2. The multiplicative factor, k, must be an odd integer less than num, and the cyclic shift, h, must be a nonnegative integer less than num. If data is a matrix with multiple rows and columns, the function processes the columns independently.

deintrlvd = algdeintrlv(data,num,'welch-costas',alph) uses the Welch-Costas method. In the Welch-Costas method, num+1 must be a prime number. alph is an integer between 1 and num that represents a primitive element of the finite field GF(num+1).

To use this function as an inverse of the algintrlv function, use the same inputs in both functions, except for the data input. In that case, the two functions are inverses in the sense that applying algintrlv followed by algdeintrlv leaves data unchanged.

Examples

collapse all

This example uses the Takeshita-Costello method of algintrlv and algdeintrlv.

Generate random data symbols to interleave. The number of rows of input data, num, must be a power of two.

num = 16;
ncols = 3;
data = rand(num,ncols)
data = 16×3

0.8147    0.4218    0.2769
0.9058    0.9157    0.0462
0.1270    0.7922    0.0971
0.9134    0.9595    0.8235
0.6324    0.6557    0.6948
0.0975    0.0357    0.3171
0.2785    0.8491    0.9502
0.5469    0.9340    0.0344
0.9575    0.6787    0.4387
0.9649    0.7577    0.3816
⋮

Interleave the symbols using the Takeshita-Costello method. Set the multiplicative factor, k, to an odd integer less than num, and the cyclic shift, h, to a nonnegative integer less than num.

k = 3;
h = 4;
intdata = algintrlv(data,num,'takeshita-costello',k,h)
intdata = 16×3

0.9572    0.6555    0.1869
0.2785    0.8491    0.9502
0.1576    0.7431    0.7655
0.0975    0.0357    0.3171
0.8147    0.4218    0.2769
0.1270    0.7922    0.0971
0.9058    0.9157    0.0462
0.9575    0.6787    0.4387
0.5469    0.9340    0.0344
0.1419    0.0318    0.6463
⋮

Deinterleave the symbols to obtain the original order.

deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h)
deintdata = 16×3

0.8147    0.4218    0.2769
0.9058    0.9157    0.0462
0.1270    0.7922    0.0971
0.9134    0.9595    0.8235
0.6324    0.6557    0.6948
0.0975    0.0357    0.3171
0.2785    0.8491    0.9502
0.5469    0.9340    0.0344
0.9575    0.6787    0.4387
0.9649    0.7577    0.3816
⋮

References

 Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers, 1999.

 Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for Turbo-Codes,” Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16–21, 1998. p. 419.