Generate Code to Optimize Portfolio by Using Black Litterman Approach
This example shows how to generate a MEX function and C source code from MATLAB® code that performs portfolio optimization using the Black Litterman approach.
Prerequisites
There are no prerequisites for this example.
About the hlblacklitterman
Function
The hlblacklitterman.m
function reads in financial information regarding a portfolio and performs portfolio optimization using the Black Litterman approach.
type hlblacklitterman
function [er, ps, w, pw, lambda, theta] = hlblacklitterman(delta, weq, sigma, tau, P, Q, Omega)%#codegen % hlblacklitterman % This function performs the Black-Litterman blending of the prior % and the views into a new posterior estimate of the returns as % described in the paper by He and Litterman. % Inputs % delta - Risk tolerance from the equilibrium portfolio % weq - Weights of the assets in the equilibrium portfolio % sigma - Prior covariance matrix % tau - Coefficiet of uncertainty in the prior estimate of the mean (pi) % P - Pick matrix for the view(s) % Q - Vector of view returns % Omega - Matrix of variance of the views (diagonal) % Outputs % Er - Posterior estimate of the mean returns % w - Unconstrained weights computed given the Posterior estimates % of the mean and covariance of returns. % lambda - A measure of the impact of each view on the posterior estimates. % theta - A measure of the share of the prior and sample information in the % posterior precision. % Reverse optimize and back out the equilibrium returns % This is formula (12) page 6. pi = weq * sigma * delta; % We use tau * sigma many places so just compute it once ts = tau * sigma; % Compute posterior estimate of the mean % This is a simplified version of formula (8) on page 4. er = pi' + ts * P' * inv(P * ts * P' + Omega) * (Q - P * pi'); % We can also do it the long way to illustrate that d1 + d2 = I d = inv(inv(ts) + P' * inv(Omega) * P); d1 = d * inv(ts); d2 = d * P' * inv(Omega) * P; er2 = d1 * pi' + d2 * pinv(P) * Q; % Compute posterior estimate of the uncertainty in the mean % This is a simplified and combined version of formulas (9) and (15) ps = ts - ts * P' * inv(P * ts * P' + Omega) * P * ts; posteriorSigma = sigma + ps; % Compute the share of the posterior precision from prior and views, % then for each individual view so we can compare it with lambda theta=zeros(1,2+size(P,1)); theta(1,1) = (trace(inv(ts) * ps) / size(ts,1)); theta(1,2) = (trace(P'*inv(Omega)*P* ps) / size(ts,1)); for i=1:size(P,1) theta(1,2+i) = (trace(P(i,:)'*inv(Omega(i,i))*P(i,:)* ps) / size(ts,1)); end % Compute posterior weights based solely on changed covariance w = (er' * inv(delta * posteriorSigma))'; % Compute posterior weights based on uncertainty in mean and covariance pw = (pi * inv(delta * posteriorSigma))'; % Compute lambda value % We solve for lambda from formula (17) page 7, rather than formula (18) % just because it is less to type, and we've already computed w*. lambda = pinv(P)' * (w'*(1+tau) - weq)'; end % Black-Litterman example code for MatLab (hlblacklitterman.m) % Copyright (c) Jay Walters, blacklitterman.org, 2008. % % Redistribution and use in source and binary forms, % with or without modification, are permitted provided % that the following conditions are met: % % Redistributions of source code must retain the above % copyright notice, this list of conditions and the following % disclaimer. % % Redistributions in binary form must reproduce the above % copyright notice, this list of conditions and the following % disclaimer in the documentation and/or other materials % provided with the distribution. % % Neither the name of blacklitterman.org nor the names of its % contributors may be used to endorse or promote products % derived from this software without specific prior written % permission. % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND % CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, % INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR % CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, % SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, % BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR % SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, % WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING % NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE % OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH % DAMAGE. % % This program uses the examples from the paper "The Intuition % Behind Black-Litterman Model Portfolios", by He and Litterman, % 1999. You can find a copy of this paper at the following url. % http:%papers.ssrn.com/sol3/papers.cfm?abstract_id=334304 % % For more details on the Black-Litterman model you can also view % "The BlackLitterman Model: A Detailed Exploration", by this author % at the following url. % http:%www.blacklitterman.org/Black-Litterman.pdf %
The %#codegen
directive indicates that the MATLAB code is intended for code generation.
Generate the MEX Function for Testing
Generate a MEX function using the codegen
command.
codegen hlblacklitterman -args {0, zeros(1, 7), zeros(7,7), 0, zeros(1, 7), 0, 0}
Code generation successful.
Before generating C code, you should first test the MEX function in MATLAB to ensure that it is functionally equivalent to the original MATLAB code and that no run-time errors occur. By default, codegen
generates a MEX function named hlblacklitterman_mex
in the current folder. This allows you to test the MATLAB code and MEX function and compare the results.
Run the MEX Function
Call the generated MEX function
testMex();
View 1 Country P mu w* Australia 0 4.328 1.524 Canada 0 7.576 2.095 France -29.5 9.288 -3.948 Germany 100 11.04 35.41 Japan 0 4.506 11.05 UK -70.5 6.953 -9.462 USA 0 8.069 58.57 q 5 omega/tau 0.0213 lambda 0.317 theta 0.0714 pr theta 0.929 View 1 Country P mu w* Australia 0 4.328 1.524 Canada 0 7.576 2.095 France -29.5 9.288 -3.948 Germany 100 11.04 35.41 Japan 0 4.506 11.05 UK -70.5 6.953 -9.462 USA 0 8.069 58.57 q 5 omega/tau 0.0213 lambda 0.317 theta 0.0714 pr theta 0.929 Execution Time - MATLAB function: 0.035645 seconds Execution Time - MEX function : 0.020345 seconds
Generate C Code
cfg = coder.config('lib'); codegen -config cfg hlblacklitterman -args {0, zeros(1, 7), zeros(7,7), 0, zeros(1, 7), 0, 0}
Code generation successful.
Using codegen
with the specified -config cfg
option produces a standalone C library.
Inspect the Generated Code
By default, the code generated for the library is in the folder codegen/lib/hbblacklitterman/
.
The files are:
dir codegen/lib/hlblacklitterman/
. .. _clang-format buildInfo.mat codeInfo.mat codedescriptor.dmr compileInfo.mat examples hlblacklitterman.a hlblacklitterman.c hlblacklitterman.h hlblacklitterman.o hlblacklitterman_data.c hlblacklitterman_data.h hlblacklitterman_data.o hlblacklitterman_initialize.c hlblacklitterman_initialize.h hlblacklitterman_initialize.o hlblacklitterman_rtw.mk hlblacklitterman_terminate.c hlblacklitterman_terminate.h hlblacklitterman_terminate.o hlblacklitterman_types.h interface inv.c inv.h inv.o pinv.c pinv.h pinv.o rtGetInf.c rtGetInf.h rtGetInf.o rtGetNaN.c rtGetNaN.h rtGetNaN.o rt_nonfinite.c rt_nonfinite.h rt_nonfinite.o rtw_proj.tmw rtwtypes.h
Inspect the C Code for the hlblacklitterman.c
Function
type codegen/lib/hlblacklitterman/hlblacklitterman.c
/* * Prerelease License - for engineering feedback and testing purposes * only. Not for sale. * File: hlblacklitterman.c * * MATLAB Coder version : 25.1 * C/C++ source code generated on : 01-Feb-2025 07:27:33 */ /* Include Files */ #include "hlblacklitterman.h" #include "hlblacklitterman_data.h" #include "hlblacklitterman_initialize.h" #include "inv.h" #include "pinv.h" #include "rt_nonfinite.h" #include <emmintrin.h> #include <string.h> /* Function Definitions */ /* * hlblacklitterman * This function performs the Black-Litterman blending of the prior * and the views into a new posterior estimate of the returns as * described in the paper by He and Litterman. * Inputs * delta - Risk tolerance from the equilibrium portfolio * weq - Weights of the assets in the equilibrium portfolio * sigma - Prior covariance matrix * tau - Coefficiet of uncertainty in the prior estimate of the mean (pi) * P - Pick matrix for the view(s) * Q - Vector of view returns * Omega - Matrix of variance of the views (diagonal) * Outputs * Er - Posterior estimate of the mean returns * w - Unconstrained weights computed given the Posterior estimates * of the mean and covariance of returns. * lambda - A measure of the impact of each view on the posterior estimates. * theta - A measure of the share of the prior and sample information in the * posterior precision. * * Arguments : double delta * const double weq[7] * const double sigma[49] * double tau * const double P[7] * double Q * double Omega * double er[7] * double ps[49] * double w[7] * double pw[7] * double *lambda * double theta[3] * Return Type : void */ void hlblacklitterman(double delta, const double weq[7], const double sigma[49], double tau, const double P[7], double Q, double Omega, double er[7], double ps[49], double w[7], double pw[7], double *lambda, double theta[3]) { __m128d r; __m128d r1; __m128d r2; double b_y[49]; double ts[49]; double b_ts[7]; double c_P[7]; double pi[7]; double b_P; double d_P; double y; int i; int i1; int i2; int k; int ps_tmp; int ts_tmp; if (!isInitialized_hlblacklitterman) { hlblacklitterman_initialize(); } /* Reverse optimize and back out the equilibrium returns */ /* This is formula (12) page 6. */ memset(&pi[0], 0, 7U * sizeof(double)); for (k = 0; k < 7; k++) { b_P = pi[k]; for (i = 0; i < 7; i++) { b_P += weq[i] * sigma[i + 7 * k]; } pi[k] = b_P * delta; } /* We use tau * sigma many places so just compute it once */ for (k = 0; k <= 46; k += 2) { _mm_storeu_pd(&ts[k], _mm_mul_pd(_mm_set1_pd(tau), _mm_loadu_pd(&sigma[k]))); } ts[48] = tau * sigma[48]; /* Compute posterior estimate of the mean */ /* This is a simplified version of formula (8) on page 4. */ memset(&c_P[0], 0, 7U * sizeof(double)); b_P = 0.0; memset(&b_ts[0], 0, 7U * sizeof(double)); for (k = 0; k < 7; k++) { d_P = c_P[k]; for (i = 0; i < 7; i++) { d_P += P[i] * ts[i + 7 * k]; } c_P[k] = d_P; y = P[k]; b_P += d_P * y; r = _mm_loadu_pd(&ts[7 * k]); r1 = _mm_loadu_pd(&b_ts[0]); r2 = _mm_set1_pd(y); _mm_storeu_pd(&b_ts[0], _mm_add_pd(r1, _mm_mul_pd(r, r2))); r = _mm_loadu_pd(&ts[7 * k + 2]); r1 = _mm_loadu_pd(&b_ts[2]); _mm_storeu_pd(&b_ts[2], _mm_add_pd(r1, _mm_mul_pd(r, r2))); r = _mm_loadu_pd(&ts[7 * k + 4]); r1 = _mm_loadu_pd(&b_ts[4]); _mm_storeu_pd(&b_ts[4], _mm_add_pd(r1, _mm_mul_pd(r, r2))); b_ts[6] += ts[7 * k + 6] * y; } b_P = 1.0 / (b_P + Omega); d_P = 0.0; for (k = 0; k < 7; k++) { b_ts[k] *= b_P; d_P += P[k] * pi[k]; } d_P = Q - d_P; /* We can also do it the long way to illustrate that d1 + d2 = I */ y = 1.0 / Omega; /* Compute posterior estimate of the uncertainty in the mean */ /* This is a simplified and combined version of formulas (9) and (15) */ for (k = 0; k < 7; k++) { er[k] = pi[k] + b_ts[k] * d_P; r = _mm_loadu_pd(&b_ts[0]); b_P = P[k]; r1 = _mm_set1_pd(b_P); _mm_storeu_pd(&b_y[7 * k], _mm_mul_pd(r, r1)); r = _mm_loadu_pd(&b_ts[2]); _mm_storeu_pd(&b_y[7 * k + 2], _mm_mul_pd(r, r1)); r = _mm_loadu_pd(&b_ts[4]); _mm_storeu_pd(&b_y[7 * k + 4], _mm_mul_pd(r, r1)); b_y[7 * k + 6] = b_ts[6] * b_P; } for (i = 0; i < 7; i++) { for (i1 = 0; i1 < 7; i1++) { b_P = 0.0; for (k = 0; k < 7; k++) { b_P += b_y[i + 7 * k] * ts[k + 7 * i1]; } ps_tmp = i + 7 * i1; ps[ps_tmp] = ts[ps_tmp] - b_P; } } /* Compute the share of the posterior precision from prior and views, */ /* then for each individual view so we can compare it with lambda */ inv(ts, b_y); memset(&ts[0], 0, 49U * sizeof(double)); for (k = 0; k < 7; k++) { ps_tmp = 7 * k + 2; i2 = 7 * k + 4; ts_tmp = 7 * k + 6; for (i = 0; i < 7; i++) { b_P = ps[i + 7 * k]; r = _mm_loadu_pd(&b_y[7 * i]); r1 = _mm_loadu_pd(&ts[7 * k]); r2 = _mm_set1_pd(b_P); _mm_storeu_pd(&ts[7 * k], _mm_add_pd(r1, _mm_mul_pd(r, r2))); r = _mm_loadu_pd(&b_y[7 * i + 2]); r1 = _mm_loadu_pd(&ts[ps_tmp]); _mm_storeu_pd(&ts[ps_tmp], _mm_add_pd(r1, _mm_mul_pd(r, r2))); r = _mm_loadu_pd(&b_y[7 * i + 4]); r1 = _mm_loadu_pd(&ts[i2]); _mm_storeu_pd(&ts[i2], _mm_add_pd(r1, _mm_mul_pd(r, r2))); ts[ts_tmp] += b_y[7 * i + 6] * b_P; } } b_P = 0.0; for (k = 0; k < 7; k++) { b_P += ts[k + 7 * k]; } theta[0] = b_P / 7.0; r = _mm_set1_pd(y); for (k = 0; k < 7; k++) { r1 = _mm_set1_pd(P[k]); _mm_storeu_pd(&b_y[7 * k], _mm_mul_pd(_mm_mul_pd(_mm_loadu_pd(&P[0]), r), r1)); _mm_storeu_pd(&b_y[7 * k + 2], _mm_mul_pd(_mm_mul_pd(_mm_loadu_pd(&P[2]), r), r1)); _mm_storeu_pd(&b_y[7 * k + 4], _mm_mul_pd(_mm_mul_pd(_mm_loadu_pd(&P[4]), r), r1)); b_y[7 * k + 6] = P[6] * y * P[k]; } memset(&ts[0], 0, 49U * sizeof(double)); for (k = 0; k < 7; k++) { ps_tmp = 7 * k + 2; i2 = 7 * k + 4; ts_tmp = 7 * k + 6; for (i = 0; i < 7; i++) { b_P = ps[i + 7 * k]; r = _mm_loadu_pd(&b_y[7 * i]); r1 = _mm_loadu_pd(&ts[7 * k]); r2 = _mm_set1_pd(b_P); _mm_storeu_pd(&ts[7 * k], _mm_add_pd(r1, _mm_mul_pd(r, r2))); r = _mm_loadu_pd(&b_y[7 * i + 2]); r1 = _mm_loadu_pd(&ts[ps_tmp]); _mm_storeu_pd(&ts[ps_tmp], _mm_add_pd(r1, _mm_mul_pd(r, r2))); r = _mm_loadu_pd(&b_y[7 * i + 4]); r1 = _mm_loadu_pd(&ts[i2]); _mm_storeu_pd(&ts[i2], _mm_add_pd(r1, _mm_mul_pd(r, r2))); ts[ts_tmp] += b_y[7 * i + 6] * b_P; } } b_P = 0.0; for (k = 0; k < 7; k++) { b_P += ts[k + 7 * k]; } b_P /= 7.0; theta[1] = b_P; theta[2] = b_P; /* Compute posterior weights based solely on changed covariance */ for (k = 0; k <= 46; k += 2) { r = _mm_loadu_pd(&ps[k]); _mm_storeu_pd(&b_y[k], _mm_mul_pd(_mm_set1_pd(delta), _mm_add_pd(_mm_loadu_pd(&sigma[k]), r))); } b_y[48] = delta * (sigma[48] + ps[48]); inv(b_y, ts); memset(&c_P[0], 0, 7U * sizeof(double)); for (k = 0; k < 7; k++) { b_P = c_P[k]; for (i = 0; i < 7; i++) { b_P += er[i] * ts[i + 7 * k]; } c_P[k] = b_P; w[k] = b_P; } /* Compute posterior weights based on uncertainty in mean and covariance */ memset(&c_P[0], 0, 7U * sizeof(double)); for (k = 0; k < 7; k++) { b_P = c_P[k]; for (i = 0; i < 7; i++) { b_P += pi[i] * ts[i + 7 * k]; } c_P[k] = b_P; pw[k] = b_P; } /* Compute lambda value */ /* We solve for lambda from formula (17) page 7, rather than formula (18) */ /* just because it is less to type, and we've already computed w*. */ pinv(P, b_ts); memset(&c_P[0], 0, 7U * sizeof(double)); b_P = 0.0; for (k = 0; k < 7; k++) { d_P = c_P[k]; for (i = 0; i < 7; i++) { d_P += er[i] * ts[i + 7 * k]; } c_P[k] = d_P; b_P += b_ts[k] * (d_P * (tau + 1.0) - weq[k]); } *lambda = b_P; } /* * File trailer for hlblacklitterman.c * * [EOF] */