
mathworks.com

Sensor Fusion Using Synthetic Radar and Vision Data

Sensor fusion and control algorithms for automated driving systems require rigorous testing. Vehicle-based testing is not
only time consuming to set up, but also difficult to reproduce. Automated Driving System Toolbox provides functionality to
define road networks, actors, vehicles, and traffic scenarios, as well as statistical models for simulating synthetic radar and
camera sensor detection.

This example shows how to generate a scenario, simulate sensor detections, and use sensor fusion to track simulated vehi-
cles. The main benefit of using scenario generation and sensor simulation over sensor recording is the ability to create rare
and potentially dangerous events and test the vehicle algorithms with them. This example covers the entire synthetic data
workflow.

Generate the Scenario

Scenario generation comprises generating a road network, defining vehicles that move on the roads, and moving the
vehicles.

In this example, you test the ability of the sensor fusion to track a vehicle that is passing on the left of the ego vehicle. The
scenario simulates a highway setting, and additional vehicles are in front of and behind the ego vehicle.

% Define an empty scenario

scenario = drivingScenario;

scenario.SampleTime = 0.01;

Add a stretch of 500 meters of typical highway road with two lanes. The road is defined using a set of points, where each
point defines the center of the road in 3-D space, and a road width.

roadCenters = [0 0; 50 0; 100 0; 250 20; 500 40];

roadWidth = 7.2; % Two lanes, each 3.6 meters

road(scenario, roadCenters, roadWidth);

Create the ego vehicle and three cars around it: one that overtakes the ego vehicle and passes it on the left, one that drives
right in front of the ego vehicle and one that drives right behind the ego vehicle. All the cars follow the path defined by the
road waypoints by using the path driving policy. The passing car will start on the right lane, move to the left lane to pass,
and return to the right lane.

mathworks.com

% Create the ego vehicle that travels at 25 m/s along the road

egoCar = vehicle(scenario, ‘ClassID’, 1);

path(egoCar, roadCenters(2:end,:) - [0 1.8], 25); % On right lane

% Add a car in front of the ego vehicle

leadCar = vehicle(scenario, ‘ClassID’, 1);

path(leadCar, [70 0; roadCenters(3:end,:)] - [0 1.8], 25); % On right lane

% Add a car that travels at 35 m/s along the road and passes the ego vehicle

passingCar = vehicle(scenario, ‘ClassID’, 1);

waypoints = [0 -1.8; 50 1.8; 100 1.8; 250 21.8; 400 32.2; 500 38.2];

path(passingCar, waypoints, 35);

% Add a car behind the ego vehicle

chaseCar = vehicle(scenario, ‘ClassID’, 1);

path(chaseCar, [25 0; roadCenters(2:end,:)] - [0 1.8], 25); % On right lane

Define Radar and Vision Sensors

In this example, you simulate an ego vehicle that has 6 radar sensors and 2 vision sensors covering the 360 degrees field of
view. The sensors have some overlap and some coverage gap. The ego vehicle is equipped with a long-range radar sensor and
a vision sensor on both the front and the back of the vehicle. Each side of the vehicle has two short-range radar sensors, each
covering 90 degrees. One sensor on each side covers from the middle of the vehicle to the back. The other sensor on each
side covers from the middle of the vehicle forward. The figure in the next section shows the coverage.

sensors = cell(8,1);

% Front-facing long-range radar sensor at the center of the front bumper of the

% car.

sensors{1} = radarDetectionGenerator(‘SensorIndex’, 1, ‘Height’, 0.2, ‘MaxRange’, 174,

...

 ‘SensorLocation’, [egoCar.Wheelbase + egoCar.FrontOverhang, 0], ‘FieldOfView’,

[20, 5]);

mathworks.com

% Rear-facing long-range radar sensor at the center of the rear bumper of the car.

sensors{2} = radarDetectionGenerator(‘SensorIndex’, 2, ‘Height’, 0.2, ‘Yaw’, 180, ...

 ‘SensorLocation’, [-egoCar.RearOverhang, 0], ‘MaxRange’, 174, ‘FieldOfView’,

[20,5]);

% Rear-left-facing short-range radar sensor at the left rear wheel well of the car.

sensors{3} = radarDetectionGenerator(‘SensorIndex’, 3, ‘Height’, 0.2, ‘Yaw’, 120, ...

 ‘SensorLocation’, [0, egoCar.Width/2], ‘MaxRange’, 30, ‘ReferenceRange’, 50, ...

 ‘FieldOfView’, [90, 5], ‘AzimuthResolution’, 10, ‘RangeResolution’, 1.25);

% Rear-right-facing short-range radar sensor at the right rear wheel well of the

% car.

sensors{4} = radarDetectionGenerator(‘SensorIndex’, 4, ‘Height’, 0.2, ‘Yaw’, -120, ...

 ‘SensorLocation’, [0, -egoCar.Width/2], ‘MaxRange’, 30, ‘ReferenceRange’, 50, ...

 ‘FieldOfView’, [90, 5], ‘AzimuthResolution’, 10, ‘RangeResolution’, 1.25);

% Front-left-facing short-range radar sensor at the left front wheel well of the

% car.

sensors{5} = radarDetectionGenerator(‘SensorIndex’, 5, ‘Height’, 0.2, ‘Yaw’, 60, ...

 ‘SensorLocation’, [egoCar.Wheelbase, egoCar.Width/2], ‘MaxRange’, 30, ...

 ‘ReferenceRange’, 50, ‘FieldOfView’, [90, 5], ‘AzimuthResolution’, 10, ...

 ‘RangeResolution’, 1.25);

% Front-right-facing short-range radar sensor at the right front wheel well of the

% car.

sensors{6} = radarDetectionGenerator(‘SensorIndex’, 6, ‘Height’, 0.2, ‘Yaw’, -60, ...

 ‘SensorLocation’, [egoCar.Wheelbase, -egoCar.Width/2], ‘MaxRange’, 30, ...

 ‘ReferenceRange’, 50, ‘FieldOfView’, [90, 5], ‘AzimuthResolution’, 10, ...

 ‘RangeResolution’, 1.25);

mathworks.com

% Front-facing camera located at front windshield.

sensors{7} = visionDetectionGenerator(‘SensorIndex’, 7, ‘FalsePositivesPerImage’, 0.1,

...

 ‘SensorLocation’, [0.75*egoCar.Wheelbase 0], ‘Height’, 1.1);

% Rear-facing camera located at rear windshield.

sensors{8} = visionDetectionGenerator(‘SensorIndex’, 8, ‘FalsePositivesPerImage’, 0.1,

...

 ‘SensorLocation’, [0.2*egoCar.Wheelbase 0], ‘Height’, 1.1, ‘Yaw’, 180);

Create a Tracker

Create a multiObjectTracker to track the vehicles that are close to the ego vehicle. The tracker uses the
initSimDemoFilter supporting function to initialize a constant velocity linear Kalman filter that works with position
and velocity.

Tracking is done in 2-D. Although the sensors return measurements in 3-D, the motion itself is confined to the horizontal
plane, so there is no need to track the height.

tracker = multiObjectTracker(‘FilterInitializationFcn’, @initSimDemoFilter, ...

 ‘AssignmentThreshold’, 30, ‘ConfirmationParameters’, [4 5]);

positionSelector = [1 0 0 0; 0 0 1 0]; % Position selector

velocitySelector = [0 1 0 0; 0 0 0 1]; % Velocity selector

% Create the display and return a handle to the bird’s-eye plot

BEP = createDemoDisplay(egoCar, sensors);

mathworks.com

Simulate the Scenario

The following loop moves the vehicles, calls the sensor simulation, and performs the tracking.

Note that the scenario generation and sensor simulation can have different time steps. Specifying different time steps for the
scenario and the sensors enables you to decouple the scenario simulation from the sensor simulation. This is useful for mod-
eling actor motion with high accuracy independently from the sensor’s measurement rate.

Another example is when the sensors have different update rates. Suppose one sensor provides updates every 20 milliseconds
and another sensor provides updates every 50 milliseconds. You can specify the scenario with an update rate of 10 millisec-
onds and the sensors will provide their updates at the correct time.

In this example, the scenario generation has a time step of 0.01 second, while the sensors detect every 0.1 second. The sen-
sors return a logical flag, isValidTime, that is true if the sensors generated detections. This flag is used to call the
tracker only when there are detections.

Another important note is that the sensors can simulate multiple detections per target, in particular when the targets are
very close to the radar sensors. Because the tracker assumes a single detection per target from each sensor, you must cluster
the detections before the tracker processes them. This is done by the function clusterDetections. See the
‘Supporting Functions’ section.

toSnap = true;

while advance(scenario) && ishghandle(BEP.Parent)

 % Get the scenario time

 time = scenario.SimulationTime;

 % Get the position of the other vehicle in ego vehicle coordinates

 ta = targetPoses(egoCar);

 % Simulate the sensors

 detections = {};

 isValidTime = false(1,8);

 for i = 1:8

 [sensorDets,numValidDets,isValidTime(i)] = sensors{i}(ta, time);

 if numValidDets

 for j = 1:numValidDets

mathworks.com

 % Vision detections do not report SNR. The tracker requires

 % that they have the same object attributes as the radar

 % detections. This adds the SNR object attribute to vision

 % detections and sets it to a NaN.

 if ~isfield(sensorDets{j}.ObjectAttributes{1}, ‘SNR’)

 sensorDets{j}.ObjectAttributes{1}.SNR = NaN;

 end

 end

 detections = [detections; sensorDets]; %#ok<AGROW>

 end

 end

 % Update the tracker if there are new detections

 if any(isValidTime)

 vehicleLength = sensors{1}.ActorProfiles.Length;

 detectionClusters = clusterDetections(detections, vehicleLength);

 confirmedTracks = updateTracks(tracker, detectionClusters, time);

 % Update bird’s-eye plot

 updateBEP(BEP, egoCar, detections, confirmedTracks, positionSelector,

velocitySelector);

 end

 % Snap a figure for the document when the car passes the ego vehicle

 if ta(1).Position(1) > 0 && toSnap

 toSnap = false;

 snapnow

 end

end

mathworks.com

Summary

This example shows how to generate a scenario, simulate sensor detections, and use these detections to track moving vehi-
cles around the ego vehicle.

You can try to modify the scenario road, or add or remove vehicles. You can also try to add, remove, or modify the sensors
on the ego vehicle, or modify the tracker parameters.

Supporting Functions

initSimDemoFilter

This function initializes a constant velocity filter based on a detection.

function filter = initSimDemoFilter(detection)

% Use a 2-D constant velocity model to initialize a trackingKF filter.

% The state vector is [x;vx;y;vy]

% The detection measurement vector is [x;y;vx;vy]

% As a result, the measurement model is H = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1]

H = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1];

filter = trackingKF(‘MotionModel’, ‘2D Constant Velocity’, ...

mathworks.com

 ‘State’, H’ * detection.Measurement, ...

 ‘MeasurementModel’, H, ...

 ‘StateCovariance’, H’ * detection.MeasurementNoise * H, ...

 ‘MeasurementNoise’, detection.MeasurementNoise);

end

clusterDetections

This function merges multiple detections suspected to be of the same vehicle to a single detection. The function looks for
detections that are closer than the size of a vehicle. Detections that fit this criterion are considered a cluster and are merged
to a single detection at the centroid of the cluster. The measurement noises are modified to represent the possibility that
each detection can be anywhere on the vehicle. Therefore, the noise should have the same size as the vehicle size.

In addition, this function removes the third dimension of the measurement (the height) and reduces the measurement vector
to [x;y;vx;vy].

function detectionClusters = clusterDetections(detections, vehicleSize)

N = numel(detections);

distances = zeros(N);

for i = 1:N

 for j = i+1:N

 if detections{i}.SensorIndex == detections{j}.SensorIndex

 distances(i,j) = norm(detections{i}.Measurement(1:2) - detections{j}.

Measurement(1:2));

 else

 distances(i,j) = inf;

 end

 end

end

leftToCheck = 1:N;

i = 0;

detectionClusters = cell(N,1);

while ~isempty(leftToCheck)

 % Remove the detections that are in the same cluster as the one under

 % consideration

mathworks.com

 underConsideration = leftToCheck(1);

 clusterInds = (distances(underConsideration, leftToCheck) < vehicleSize);

 detInds = leftToCheck(clusterInds);

 clusterDets = [detections{detInds}];

 clusterMeas = [clusterDets.Measurement];

 meas = mean(clusterMeas, 2);

 meas2D = [meas(1:2);meas(4:5)];

 i = i + 1;

 detectionClusters{i} = detections{detInds(1)};

 detectionClusters{i}.Measurement = meas2D;

 leftToCheck(clusterInds) = [];

end

detectionClusters(i+1:end) = [];

% Since the detections are now for clusters, modify the noise to represent

% that they are of the whole car

for i = 1:numel(detectionClusters)

 measNoise(1:2,1:2) = vehicleSize^2 * eye(2);

 measNoise(3:4,3:4) = eye(2) * 100 * vehicleSize^2;

 detectionClusters{i}.MeasurementNoise = measNoise;

end

end

createDemoDisplay

This function creates a three-panel display:

1.	 Top-left corner of display: A top view that follows the ego vehicle.

2.	 Bottom-left corner of display: A chase-camera view that follows the ego vehicle.

3.	 Right-half of display: A bird’s-eye plot display.

function BEP = createDemoDisplay(egoCar, sensors)

mathworks.com

 % Make a figure

 hFigure = figure(‘Position’, [0, 0, 1200, 640], ‘Name’, ‘Sensor Fusion with

Synthetic Data Example’);

 movegui(hFigure, [0 -1]); % Moves the figure to the left and a little down from 	
				
				 % the top

 % Add a car plot that follows the ego vehicle from behind

 hCarViewPanel = uipanel(hFigure, ‘Position’, [0 0 0.5 0.5], ‘Title’, ...

‘Chase Camera View’);

 hCarPlot = axes(hCarViewPanel);

 chasePlot(egoCar, ‘Centerline’, ‘on’, ‘Parent’, hCarPlot);

 % Add a car plot that follows the ego vehicle from a top view

 hTopViewPanel = uipanel(hFigure, ‘Position’, [0 0.5 0.5 0.5], ‘Title’, ‘Top View’);

 hCarPlot = axes(hTopViewPanel);

 chasePlot(egoCar, ‘Centerline’, ‘on’, ‘Parent’, hCarPlot, ‘ViewHeight’, 130,

‘ViewLocation’, [0 0], ‘ViewPitch’, 90);

 % Add a panel for a bird’s-eye plot

 hBEVPanel = uipanel(hFigure, ‘Position’, [0.5 0 0.5 1], ‘Title’,

‘Bird’’s-Eye Plot’);

 % Create bird’s-eye plot for the ego car and sensor coverage

 hBEVPlot = axes(hBEVPanel);

 frontBackLim = 60;

 BEP = birdsEyePlot(‘Parent’, hBEVPlot, ‘Xlimits’, [-frontBackLim frontBackLim],

‘Ylimits’, [-35 35]);

 % Plot the coverage areas for radars

mathworks.com

 for i = 1:6

 cap = coverageAreaPlotter(BEP,’FaceColor’,’red’,’EdgeColor’,’red’);

 plotCoverageArea(cap, sensors{i}.SensorLocation,...

 sensors{i}.MaxRange, sensors{i}.Yaw, sensors{i}.FieldOfView(1));

 end

 % Plot the coverage areas for vision sensors

 for i = 7:8

 cap = coverageAreaPlotter(BEP,’FaceColor’,’blue’,’EdgeColor’,’blue’);

 plotCoverageArea(cap, sensors{i}.SensorLocation,...

 sensors{i}.MaxRange, sensors{i}.Yaw, 45);

 end

 % Create a vision detection plotter put it in a struct for future use

 detectionPlotter(BEP, ‘DisplayName’,’vision’, ‘MarkerEdgeColor’,’blue’, ‘Marker’,’̂ ’);

 % Combine all radar detctions into one entry and store it for later update

 detectionPlotter(BEP, ‘DisplayName’,’radar’, ‘MarkerEdgeColor’,’red’);

 % Add road borders to plot

 laneBoundaryPlotter(BEP, ‘DisplayName’,’road’, ‘Color’, [.75 .75 0]);

 % Add the tracks to the bird’s-eye plot. Show last 10 track updates.

 trackPlotter(BEP, ‘DisplayName’,’track’, ‘HistoryDepth’,10);

 axis(BEP.Parent, ‘equal’);

 xlim(BEP.Parent, [-frontBackLim frontBackLim]);

 ylim(BEP.Parent, [-40 40]);

 % Add an outline plotter for ground truth

mathworks.com

 outlinePlotter(BEP, ‘Tag’, ‘Ground truth’);

end

updateBEP

This function updates the bird’s-eye plot with road boundaries, detections, and tracks.

function updateBEP(BEP, egoCar, detections, confirmedTracks, psel, vsel)

 % Update road boundaries and their display

 rb = roadBoundaries(egoCar);

 plotLaneBoundary(findPlotter(BEP,’DisplayName’,’road’),rb);

 % update ground truth data

 [position, yaw, length, width, originOffset, color] = targetOutlines(egoCar);

 plotOutline(findPlotter(BEP,’Tag’,’Ground truth’), position, yaw, length, width,

‘OriginOffset’, originOffset, ‘Color’, color);

 % Prepare and update detections display

 N = numel(detections);

 detPos = zeros(N,2);

 isRadar = true(N,1);

 for i = 1:N

 detPos(i,:) = detections{i}.Measurement(1:2)’;

 if detections{i}.SensorIndex > 6 % Vision detections

 isRadar(i) = false;

 end

 end

 plotDetection(findPlotter(BEP,’DisplayName’,’vision’), detPos(~isRadar,:));

 plotDetection(findPlotter(BEP,’DisplayName’,’radar’), detPos(isRadar,:));

 % Prepare and update tracks display

80868v00mathworks.com

© 2017 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

 trackIDs = {confirmedTracks.TrackID};

 labels = cellfun(@num2str, trackIDs, ‘UniformOutput’, false);

 [tracksPos, tracksCov] = getTrackPositions(confirmedTracks, psel);

 tracksVel = getTrackVelocities(confirmedTracks, vsel);

 plotTrack(findPlotter(BEP,’DisplayName’,’track’), tracksPos, tracksVel, tracksCov,

labels);

end

Learn More

Request a trial of Automated Driving System Toolbox

http://www.mathworks.com/trademarks
https://www.mathworks.com/programs/trials/trial_request.html?prodcode=DR

