
2008-01-1469

Best Practices for Verification, Validation, and Test in Model-
Based Design

Brett Murphy, Amory Wakefield, and Jon Friedman
The MathWorks, Inc.

Copyright © 2008 The MathWorks, Inc.

ABSTRACT

Model-Based Design is no longer limited to R&D and
pilot programs; it is frequently used for production
programs at automotive companies around the world.
The demands of production programs drive an even
greater need for tools and practices that enable
automation and rigor in the area of verification,
validation, and test. Without these tools and practices,
achieving the quality demanded by the automotive
market is not possible. This paper presents best
practices in verification, validation, and test that are
applicable to any program, but are critical when applying
Model-Based Design in production programs.

INTRODUCTION

Moore’s law holds that the number of transistors in an
integrated circuit doubles every couple of years. Thanks
to this trend, the amount of software embedded in
automobiles, aircraft, consumer electronics, and many
other types of systems continues to grow. In the past,
engineers developed software using traditional
development tools such as editors, compilers and
debuggers. But as the size and complexity of the
embedded software programs grew, these tools and the
development processes they support fell short. The
challenges were particularly acute in the development of
safety-critical embedded systems, many of which are
found in automotive and aerospace applications.

Model-Based Design helps address the challenges of
embedded system development [1][2]. Using models at
the core of the development process provides engineers
with insight into the dynamics and algorithmic aspects of
the system through simulation. In addition, the models
are commonly used:

• as executable specifications
• to communicate (sub-)system requirements and

interface definitions
• to provide virtual prototypes or models of the

complete system
• for automatic code generation of embedded software

algorithm or logic

One of the most valuable aspects of Model-Based
Design is the availability of executable models to
perform Verification, Validation, and Test (VV&T)
throughout the development process, especially its
earliest stages. A study conducted by NASA on Internal
Verification and Validation found that a large number of
errors discovered in the testing stage late in
development processes are actually introduced at the
beginning of the process as requirements errors.
Moreover, fixing these requirements errors in the testing
phase was more than 10 times more expensive than if
they had been found earlier in the process during the
design phase [3].

In our experience, organizations attempting to ensure a
rigorous development process using Model-Based
Design need to define and establish effective VV&T
activities, especially early in the development process.
This paper presents a fairly common (and perhaps
common-sense) set of best practices found across a
number of organizations with rigorous processes.

DEVELOP MODEL TESTS WITH THE DESIGN

Through modeling and simulation, embedded
developers are able to design, visualize, and debug
larger amounts of system logic than by using traditional
development methods. Many engineers, however, do
modeling and simulation in an ad-hoc manner. They use
their judgment, and perhaps a design specification, to
select the conditions used to simulate their designs.
They may capture and document results, but the
simulations are often difficult to replicate later. For
example, if a design error is found during code testing, it
is often difficult to replicate the same test on the model
to determine the root cause of the error and provide a
complete and verified fix.

The increasing complexity of embedded systems and
the increasing need for development standards in
building safety-critical systems are driving development
groups to use more systematic processes [4]. This
growing need for systematic techniques holds for
simulation as well. To this end, development groups
using simulation techniques are developing and applying

test suites to the models and then reusing these suites
to test the software implementation. These tests include
both the initial conditions and input sequences for the
simulation, as well as the expected outputs for the test.
Well defined tests also have a description that explains
its purpose, the requirement it is testing, or both. The
entire suite is developed as a test harness that can be
executed repeatedly in simulation. This process is often
referred to as model-in-the-loop (MIL) testing.

As shown in Figure 1, the best practice is to reuse the
test harness developed for MIL testing against the
software implementation of the model on the host
development environment. This practice, known as
cosimulation of the code or software-in-the-loop (SIL),
provides confidence that the code matches the desired
behavior developed and specified in the model. Because
the test harness is the same in MIL and SIL testing, it is
easier to compare the output of both tests and replicate
any identified errors. Often engineers will “elaborate” the
set of tests used in SIL, adding tests that cannot be
performed in MIL testing. In addition to ensuring there
have been no changes in behavior from stage to stage,
SIL tests are used to ensure that the development step
did not introduce errors.

Tools are now available to take this process one step
further by testing the software after it has been compiled
and downloaded to an embedded target or processor.
This cosimulation step is often called processor-in-the-
loop (PIL) testing. PIL tools provide a method to execute
the tests - originally created on a development host
computer like a PC – on the software while it is running
on an embedded processor. One technique uses the
host-to-target communications mechanism provided by
the embedded Integrated Development Environment,
which engineers use to compile and download the code
on to the target. With this technique, tests or simulations
running on the host development computer
communicate synchronously with the code running on
the embedded target, enabling engineers to run the tests
against the code on the target. Again, using the same
test harness makes it straightforward to compare PIL
results with the original MIL results. This comparison of
test results between the embedded code and the original
model gives engineers confidence that the behavior of
the component has not changed after compilation and
download and that the code is functionally correct.

As noted previously, errors become increasingly more
costly the closer to production they are found. A best
practice in VV&T for Model-Based Design is to develop
model tests with the design. Developing a test harness
that can be used for MIL, SIL, and ultimately PIL testing
helps developers find errors early in the process and
ensure errors have not been introduced during
implementation or integration.

Figure 1. Develop tests to run against the model (model-
in-the-loop); reuse those same tests with the code
(software-in-the-loop) and embedded code (processor-
in-the-loop).

TEST EXHAUSTIVELY IN SIMULATION

There is an old saying, “the only person who believes
the simulation results is the engineer who developed the
model.” The corollary to that statement is “the only
person who does not believe the test results is the test
engineer.” While there is no one solution that meets all
testing needs, most engineers are more confident with
the results from hardware testing. Fully exploring the
design space variability in simulation, however, will save
time later in the development cycle. In simulation,
engineers develop requirements validation and initial
verification-based test scenarios.

Almost every test scenario involves varying something:
inputs, plant parameters, environmental factors. Time
and expense often limit how much variability can be
tested. By testing in a model environment, however,
different test cases can be run much faster and, if the
processing power is available, in parallel. Exploring the
entire parameter space in simulation can narrow down
the set of critical tests that must be run in real time or in
the real world later. Simulation models also enable

Model

Test
vectors

Expected
outputs

Test harness - MIL

C, C++

Test
vectors

Expected
outputs

Test harness - SIL

Embedded Target

Test
vectors

Expected
outputs

Test harness - PIL

engineers to test conditions that would be destructive or
cost-prohibitive to run in the lab or on the road. For
example, if a brake system controller does not work
correctly the first time it is tested on a vehicle then costly
prototypes could be damaged or destroyed.

RUN THE SAME TESTS IN SIMULATION AND IN
THE LAB

The best results are achieved when there is a continuum
of tests that run throughout – and in parallel with – the
design process. When models are developed, tests that
focus on the aspects of the design captured in the model
should be run on the model. As the design evolves and
is implemented, the corresponding tests should also
evolve and be applied in parallel. Thus, at the end of the
design, engineers are not merely relying on what they
believe in, but also have a well established set of
continuous verification results that demonstrate the
efficacy of the design.

To run the same tests in simulation and in the lab,
engineers need tools that facilitate hardware
connectivity, measure physical quantities in a laboratory
environment, and link to the modeling environment.
These tools enable the reuse of test vectors run under
simulation in hardware-based testing. Using identical
test cases makes comparing hardware and modeling
results much easier.

HARDWARE-IN-THE-LOOP TESTING

It is common for powertrain engineers to develop control
and on-board diagnostics algorithms in parallel with the
physical powertrain components. The software
realization of those algorithms takes a long time and
must be started very early in the design cycle so both
the hardware and software arrive at the end of the
assembly line functioning properly. To perform
validation of the algorithms before production hardware
is available, engineers use hardware-in-the-loop (HIL)
testing. In this context, HIL is simulation used to test
production ECUs and to test prototype control
algorithms.

This kind of testing requires models of the physical
components that have sufficient fidelity to test the
various execution paths within the software. An
environment for modeling and simulating physical
systems is needed. With Simulink® and Simscape™
from The MathWorks, engineers can simulate the plant
model and then use Real-Time Workshop® to generate
code that can be run on a HIL computer.

INTEGRATION TESTING

One cornerstone of Model-Based Design is to make
continuous testing and validation a part of the design
process. In this process, components and subsystems
are built, tested, integrated with larger systems, and
tested again. This approach exposes defects in the

interface between components or subsystems as early
as possible.

When integrating several subsystems, it is important to
have a thorough understanding of the requirements of
each system and component. A best practice is to
construct test scenarios for each of these requirements
up front in the design and validate the subsystem
models against these test scenarios. This process
validates the models, the requirements and the test
scenarios and reduces the number of errors introduced
at this early development stage. When engineers reuse
the same model tests in production testing, they reduce
development effort significantly.

USE ALL AVAILABLE TECHNIQUES

Often engineering teams look to just one set of
verification tests or verification criteria to determine
whether a design meets the specifications. For
example, some engineering organizations use a set of
functional tests to verify the design. Others seek to
“cover” the code with tests and use coverage metrics
such as Modified Condition/Decision Coverage
(MC/DC), a required metric in some safety-critical
system development standards [5]. In most cases,
however, there is no single test that can fully verify that
the design has met the requirements and will not fail in
operation. Instead, verification can be viewed as a
series of filters that are applied to a design to ensure
that the final production implementation meets all of the
design specifications – explicit, implicit, and derived.

With the new generation of tools, a new verification
technology is now available that goes beyond testing.
Formal methods can prove that a design meets certain
specified properties and generate examples of violations
if it does not. These tools can also generate tests
automatically to meet specific test objectives inserted by
the developer or turned on model-wide. For example, a
test engineer can instruct the tool to generate a set of
test vectors that will provide complete MC/DC structural
model coverage. For code verification, formal methods
can be used to detect runtime errors or prove source
code reliability without compiling. While currently limited
to the component, sub-system, or module level due to
scalability of the underlying formal analysis technology,
these tools provide powerful new methods for VV&T in
Model-Based Design.

DESIGN VERIFICATION USING TEST GENERATION
FROM MODELS

Determining when a test suite is sufficient has often
been considered more art than science because it is
typically based on the judgment of a design or test
engineer. MC/DC is an emerging metric that provides a
more objective measure of test completeness. Coverage
is a measure of how much of the logic in a model – or in
source code – has been exercised during testing.
MC/DC is the most stringent measure of coverage. The
U.S. Federal Aviation Administration’s (FAA) DO-178B

safety-critical standard requires complete MC/DC of any
software being deployed in a safety-critical system [3].
Writing a set of tests that achieve 100% MC/DC is
challenging. The controller shown in Figure 2 is not very
complicated. We found, however, that writing the tests
that exercise every logical path in the model would take
a design engineer at least as long as the original design
effort. With a test generation tool this can take as little as
three seconds, resulting in the tests shown in Figure 3.

Figure 2. A cruise control model requiring a test suite
that achieves 100% MC/DC coverage.

Figure 3. Automatically generated tests for 100%
MC/DC structural coverage of a cruise control model.

Automatic test generation can be useful to an OEM
handing off a subsystem or component model to a
supplier as a software specification. The OEM can use
test generation to develop tests that they can use as
acceptance tests via SIL. The supplier can generate
tests from a more detailed version of the specification
model to ensure the code they develop matches the

behavior of the model via PIL. Both sides are better able
to ensure that the code is correct before it is integrated
into a controller. As a result, problems are identified
before integration or hardware-in-the-loop testing.

CODE VERIFICATION WITH FORMAL METHODS

Until recently, there were three options for detecting run-
time errors in embedded software: code reviews, static
analyzers, and trial-and-error dynamic testing. Code
reviews are labor-intensive and often impractical for
large, complex applications. Static analyzers identify
relatively few problems and, most importantly, leave
most of the source code undiagnosed. Dynamic or
white-box testing requires engineers to write and
execute numerous test cases. When tests fail, additional
time is required to find the cause of the problem through
an uncertain debugging process. Even with tests
developed from a model, the tests can miss design
errors that manifest themselves in the code as run-time
errors. These can include:

• Overflows and underflows
• Division by zero and other arithmetic errors
• Out-of-bound array access
• Dead (or unreachable) code

Other code errors that can show up, especially in a mix
with hand-generated code, include:

• Illegally de-referenced pointers
• Read-only access to non-initialized data
• Dangerous type conversions

Code verification tools based on formal methods, such
as MathWorks™ PolySpace® tools, analyze code and
detect these types of run-time errors. More importantly,
use of these tools can prove the absence of such errors
and provide strong assurance of the code’s reliability.
For the code shown in Figure 4, proof of code
correctness or the absence of errors would be indicated
by all lines colored as green. In addition, formal methods
allow a tool to automatically verify important dynamic
properties of programs. By verifying the dynamic
properties of embedded applications, formal methods
can encompass all software behaviors and all variations
of input data, including how software can fail.

Used in addition to testing, as part of a development
process, code verification tools provide another
technique for identifying design and implementation
errors that would be difficult to find and costly to correct
later in the development process.

Figure 4. Code verification tools using formal methods
can detect run-time errors, identify dead code, and prove
code correctness.

CONCLUSION

Verification, validation, and test activities are critical to
the success of any development process. With Model-
Based Design, models are used to verify, validate, and
test a design early and continuously through out the
design process. This improves a team’s ability to deploy
a high-quality embedded system on time compared to
traditional methods, which rely on verification, validation
and testing at the end of the process. There are many
ways a development organization can apply verification
and validation techniques when using Model-Based
Design, but our experience with several process
adoptions reveals a clear set of best practices: Develop
model tests with the design, Test exhaustively in
simulation, Run the same tests in simulation and in the
lab, and Use all available techniques. Applying these
best practices helps ensure a development process that
takes full advantage of Model-Based Design to provide
more rigorous verification, validation, and test.

REFERENCES

1. User presentation from The MathWorks Automotive
Conference, available here:
www.mathworks.com/industries/auto/iac/
and user presentations from Model-Based Design
conferences located:
www.mathworks.de/company/events/mbd/
www.mathworks.co.uk/company/events/mbd/

2. G. Hodge, J. Ye, W. Stuart, “Multi-Target Modeling
for Embedded Software Development for

Automotive Applications,” Paper 2004-01-0269,
2004 SAE World Congress.

3. Return on Investment for Independent Verification &
Validation, NASA, 2004.

4. T. Erkkinen, “Production Code Generation for
Safety-Critical Systems,” Technical Paper, 2004
SAE World Congress.

5. B. Aldrich, “Using Model Coverage Analysis to
Improve the Controls Development Process,” AIAA
2002.

CONTACT

Brett Murphy is responsible for the technical marketing
of verification, validation, and test products at The
MathWorks.

Brett has extensive experience in controls analysis, real-
time software development, systems engineering and
product marketing in the aerospace and embedded
systems industries built while working at Fujitsu in
Tokyo, Japan; Space Systems/Loral in Palo Alto, CA;
and Real-Time Innovations, Inc. in Santa Clara, CA.
Brett holds a BS and MS in Aerospace Engineering from
Stanford University.

E-mail: Brett.Murphy@mathworks.com

The MathWorks, Inc. retains all copyrights in the figures and excerpts of code
provided in this article. These figures and excerpts of code are used with
permission from The MathWorks, Inc. All rights reserved.

©1994-2008 by The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of
their respective holders.

Red
BUG

Green
SAFE

Gray
DEAD

Orange
WARNING

