16 |

How Do You Want Them Numbers?

Sometimes you want symbolic, sometimes you don’t

go into the MATLAB all-night diner off of Old Cochituate Road, west

of Natick. “I see you've got a special on Hilbert matrices,” I tell the

redheaded waitperson. “Ull have one of the 3-by-3s. I'll start with the
determinant, then you can bring me the inverse, and I'll finish up with a
Jew eigenvalues.”

“OK, budd),” the waitperson replies. “How do you want them numbers?”

Good question. How do you want your numbers? Until recently
with MATLAB, you really didn’t have much choice. You could
have them any way, as long as they were floating-point. Sure, we
could display them in several different formats, and sometimes
even make them look like integers, but there was really only one
big pot of them in the kitchen.

Now, with the addition of the Symbolic Math Toolbox, there
is a wider range of numeric representations and arithmetic. This
toolbox, which uses the kernel and library of Maple V® to do
much of its computation, employs a combination of unlimited
precision integer and rational arithmetic, fixed-precision hardware
floating-point arithmetic, variable precision-software floating-
point arithmetic, and symbolic computer algebra.

My own experience over the years with both numeric and
symbolic computation has led me to appreciate a mixture of all of
these representations. Symbolic computation is terrific for
problems like matrix determinants and inverses, which involve
only rational arithmetic operations. But for “irrational” problems,
like matrix eigenvalues and solutions of nonlinear equations,
usually prefer the approximate, floating-point representations.

Consider the number “4.2”. Mathematically, this is the point
one fifth of the way from 4 to 5 on the real number line. In the
text processor where I'm typing this column, and in the input
text for MATLAB, this number is represented as a character
string—the character “4”, followed by the character “.”, followed
by the character “2”. In IEEE floating-point format, this number
is represented by some bits which print out as 4010CCCCCCCC -
CGCD. (OK, with roundoff error, that’s not exactly 4.2. But, for a
change, I’'m not worried about that now.)

Here is list of possible representations of this one number:

4.2

4010Ccccccccceeb

42/10

21/5
4200000000000000000000000.0E-24
sqrt(17.64)
(2+sqrt(.2)*i)*(2-sqrt(.2)*1i)
RootOf (105*Z2~2-416*Z-105)

All of these can now occur in MATLAB with the Symbolic
Math Toolbox. And each of them may be advantageous in a
particular situation.

For matrix problems larger than about 10-by-10, there is usual-
ly no choice. MATLAB’s traditional floating-point computation is

usually the only practical approach. But even for small problems,
the exact results produced by symbolic computation are some-
times too complicated to be really useful.

Let’s see how symbolic computation affects one of our sim-
plest test matrices, the Hilbert matrix. The MATLAB statement

H = hilb(3)

produces the floating-point representation

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

Of course, the internal representation of H involves the floating-
point approximations to 1, 1/2, 1/3, 1/4 and 1/5. The symbolic
representation of H can be computed by

S = sym(H)

The sym function is able to determine that the elements of H are
the ratios of small integers, and so produces

S =

[1, 1/2, 1/8]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

The determinant of the Hilbert matrix can be computed from
either representation. The floating point, approximate, result is

4.6296e-04
while the symbolic, exact, result is
1/2160

Which do you prefer? I suspect almost all of us would vote for the
symbolic result. It’s prettier; it’s somehow more basic; and, it’s “exact.”

The same is true of matrix inversion. Maple V does matrix
inversion in a finite number of exact, rational operations and so,
in this case, is able to produce the exact result, which turns out to
have integer entries.

[9, -36, 30]
[-36, 192, 180]
[30, -180, 180]

It’s hard to argue with perfection. The floating-point computation
done by the statement

inv(H)

would only produce values near these integers.
The characteristic polynomial? Again, a finite number of exact,
rational operations produces the linear form

FROM THE MATHWORKS

X*3-23/15*x"2+127/720*x-1/2160

which is suitable for further manipulation, or the “prettyprint”
form:

3 23 2 127

X = --=-= X4 === X - 1/2160
15 720
which is easier to look at. In contrast, MATLAB’s traditional
poly(H)
produces
1.0000 -1.5333 0.1764 -0.0005

For polynomials of modest degree with rational coefficients, the
symbolic representation is certainly preferable.

I hope you guessed that the next step is the eigenvalues. Now
the scales begin to tip away from the exact answer. The traditional

eig(H)
produces the floating-point results

0.12232706585391
0.00268734035577
1.40831892712365

The new toolbox gives an intimidating result,

[(129287/1458000+1 /14400*1*29933~ (1/2)*3~
(1/2)"(1/3)+6559/32400/ (129287 /1458000+1 /
14400%i*29933" (1/2)*3~(1/2))~ (1/3)+23/45]

[-1/2%(129287/1458000+1/14400*i*29933"
(1/2)*3~(1/2))~(1/3) -6559/64800/ (129287
1458000+1/14400*1*29933" (1/2)*3~ (1/2))*
(1/3)+23/45+1/2*i*3(1/2)* ((129287/14580
00+1/14400*i*29933" (1/2)*3~ (1/2))~(1/3)65
59/32400/ (129287 /1458000+1/14400*1*29933~
(1/2)*3~(1/2))~(1/3))]

[-1/2*(129287/1458000+1/14400*1*29933*
(1/2)*3~(1/2))"(1/3)6559/64800/ (1292871
458000+1/14400*1*29933"~ (1/2)*3~(1/2))~ (1
/3)+23/45-1/2*%i*3"(1/2)* ((129287 /1458000
+1/14400%1*29933 ~(1/2)*3~(1/2))~(1/3)
6559/32400/ (129287 /1458000+1/14400%*1*2993
3% (1/2)*3~(1/2))~(1/3))]

This is the exact answer. It results from a classic formula known as
Cardano’s solution, which gives the roots of a cubic polynomial.
"The symbolic eigenvalues are stored as a MATLAB string
containing 786 characters which represents a vector whose three
elements are the eigenvalues. You can see both square roots and
cube roots in the result. And, although all three roots are real (since
the matrix is symmetric), their symbolic representation involves i,
the imaginary unit. The presence of i, or something equivalent, is
unavoidable; it is not possible to represent these real quantities
without using square roots of negative numbers or referencing trig
functions. (Historically, this is where complex numbers first
appeared. Cardano realized they were necessary in his formula for
the roots of a cubic, even though the roots themselves were real.)

NEWSLETTER —

WINTER 1994

The singular values are even worse. Maple computes svd(A)
from
sqrt(eig(A'*A))

which is perfectly OK when there are no roundoff errors. But for
the 3-by-3 Hilbert matrix, this leads to a symbolic representation
which is even more complicated then the eigenvalues of A itself,
a string containing 837 characters, complex numbers, and sixth
roots. Let’s save a little space by printing only the third singular
value; the other two are similar.

[1/1200* (1440000* (18282673 /64000000+3/
160000*1*89799" (1/2))~ (2/3)+624681+
959200* (18282673 /64000000+3 /160000* 1 *
89799~ (1/2))~(1/3))~(1/2)/ (18282673/
64000000+3/160000*i*89799" (1/2)) " (1/6)]

However, the Hilbert matrix is symmetric and positive definite.
So its eigenvalues and its singular values are equal. The third
singular value is actually equal to one of the three eigenvalues; it’s
just represented differently. But it isn’t clear which one. And it
turns out to be a very difficult symbolic computation to verify that
the symbolic representation of the eigenvalues and the singular
values are, in fact, the same quantities.

These symbolic results for the eigenvalues and singular values
of the 3-by-3 Hilbert matrix are pretty typical. If the characteristic
polynomial doesn’t factor nicely into linear and quadratic factors
with small, integer coefficients, the symbolic representations of
its roots are too cumbersome and complicated to be much use.

So, we're pleased to see “symbolic” added to the menu of ways
that MATLAB can represent numbers. For rational operations on
small matrices, it’s great to get the exact answer. But, like fresh
broccoli or low-fat ice cream, we have no intention of making it
our steady diet.

Good question. How do

any way, as long as they

were floating-point.

©606000600000000000000000000000000000080

Yyou want your numabers?

You really didn’t have much

choice. You could have them

Until recently with MATLAB,

17

