CONTROL ALGORITHM MODELING
GUIDELINES USING MATLAB®,
Simulink®, and Stateflow®

Version 4.01(English edition)

Japan MBD Automotive Advisory Board
(JMAAB)
31-Mar- 2015

(correct 19-Jun-2015)

© Copyright 2007JMAAB. All rights reserved. 1

M Copyright
e The copyright of this document belongs to JMAAB.
e JMAAB provides no guarantees with regard to the contents of this document. JIMAAB shall not be
liable for any failures which occur as a result of using this document. Please note that the
information within this document is subject to change or removal without notice.

B Handling this document

e This document may be reproduced only for internal use and non-commercial purposes. In
addition, when quoting from this document, state explicitly that the quote comes from this
document, and include the name of the author, Title etc., in accordance with the requirements for
citation.

e Please refer to the JIMAAB website for any information regarding this deliverable
(http://jmaab.mathworks.jp/).

e For any other inquiries, please contact the JMAAB office (jmaab-office@mathworks.co.jp).

B Please note:
e This document is English edition of “CONTROL ALGORITHM MODELING GUIDELINES USING
MATLAB®, Simulink® and Stateflow® Version 4.0”.
e There were differences between Japanese edition and English edition until Version 3.0. However,
they were fixed in Version 4.0. Thus, there may be the case that the even the same rules are
different from the past version.

© Copyright 2007JMAAB. All rights reserved. 2

TABLE OF CONTENTS

CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, SIMULINK®,

AND STATEFLOW®

1. INTRODUCTION

1.1. Purpose of these Guidelines

1.2. Guideline template

1.2.1.1ID
1.2.2. Title

1.2.3. Priority

1.2.4. Scope :

1.2.5. MATLAB version
1.2.6. Prerequisites
1.2.7. Description

1.2.8. See Also

1.2.9. Last Change

1.3. Organization of these Guidelines

2. NAMING CONVENTIONS

2.1. Naming Conventions - Overall summary
2.1.1. Rule IDs for characters that can be used in names
2.1.2. Rule IDs for character length

2.1.3. List of naming rule constraints "character type / character length"

2.2. General Rules
2.2.1. ar_0001: Usable characters for file names
2.2.2. ar_0002: Usable characters for folder names

2.2.3. je_0241:
2.2.4. je_0242:

Length restrictions for file names
Length restrictions for folder names

2.3. Internal model rules

2.3.1. jc_0201:
2.3.2.jc_0211:
2.3.3. jc_0222:
2.3.4. jc_0232:
2.3.5. jc_0231:
2.3.6. jc_0243:
2.3.7. jc_0244:
2.3.8. jc_0245:
2.3.9. jc_0246:

Usable characters for Subsystem names

Usable characters for Inport block and Outport block
Usable characters for signal line and bus names
Usable characters for parameter names

Usable characters for block names

Length restrictions for subsystem names

Length restrictions for Inport and Outport names
Length restrictions for signal and bus names

Length restrictions for parameter names

2.3.10. jc_0247: Length restrictions for block names

2.4. Notes on other used characters
2.4.1. na_0035: Adoption of naming conventions

2.4.2. jc_0251:

Naming restrictions for signals and parameters.

2.4.3. na_0014: Use of local language in Simulink and Stateflow

3. MODEL ARCHITECTURE

© Copyright 2007JMAAB. All rights reserved. 3

1

10
10

10
10
11
11
11
11
12
12
12
12

12

13

13
13
13
13

13
13
14
15
15

16
16
16
17
17
18
18
19
19
20
21

21
21
22
22

26

3.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow

3.1.2. na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines
3.1.3. db_0143: Similar block types on the model levels

3.1.4. db_0144: Use of Subsystems

4. SIMULINK

4.1. Diagram appearance
4.1.1. na_0004: Simulink model appearance
4.1.2. db_0043: Simulink font and font size
4.1.3. db_0042: Port block in Simulink models
4.1.4. jm_0002: Block resizing
4.1.5. db_0142: Position of block names
4.1.6. jc_0061: Display of block names
4.1.7. db_0140: Display of block parameters
4.1.8. db_0032: Simulink signal appearance
4.1.9. db_0141: Signal flow in Simulink models
4.1.10. jc_0110: Direction of block
4.1.11. jc_0111: Direction of Subsystem
4.1.12. jc_0653: Guidelines for avoiding algebraic loops between subsystems
4.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks
4.1.14. jc_0602: Consistency in model element names
4.1.15. db_0146: Triggered, enabled, conditional Subsystems
4.1.16. jc_0281: Naming of Trigger Port block and Enable Port block
4.1.17. jc_0603: Model description
4.1.18. jc_0604: Block shading

4.2. Signals
4.2.1. na_0010: Grouping data flows into signals
4.2.2. na_0008: Display of labels on signals
4.2.3. na_0009: Entry versus propagation of signal labels
4.2.4.jc_0008 : Definition of a Signal labels.
4.2.5. j¢_0009 :Propagation of signal label
4.2.6. na_0005: Port block name visibility in Simulink models
4.2.7. j¢_0082: Display of Inport and Outport block names 1
4.2.8. jc_0083: Display of Inport and Outport block names 2
4.2.9. db_0097: Position of labels for signals and busses
4.2.10. db_0081: Unconnected signals, block inputs and block outputs

4.3. Use of of Blocks
4.3.1. na_0003: Simple logical expressions for If condition blocks
4.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations
4.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers
4.3.4. hd_0001: Prohibited Simulink sinks
4.3.5. na_0011: Scope of Goto and From blocks
4.3.6. jc_0141: Use of the Switch block
4.3.7.)c_0121: Use of the Sum block
4.3.8. jc_0610: Operator order for Product block
4.3.9. jc_0611: Input signal sign during product block division
4.3.10. jc_0131: Use of Relational Operator block
4.3.11. jc_0161: Use of Data Store Read/Write/Memory blocks
4.3.12. Guideline for using the Logical Operator block
4.3.13. jc_0011: Optimization parameters for Boolean data types
4.3.14. jc_0629: Fcn block use limits
4.3.15. jc_0622: Guideline for using the Fen block
4.3.16. jc_0626: Guideline for using the Lookup Table system block
4.3.17. jc_0627: Guideline for using the Discrete-Time Integrator block

© Copyright 2007JMAAB. All rights reserved. 4

26
26
26
28

30

30
30
31
31
32
33
33
34
37
38
39
40
40
41
42
43
44
45
46

47
47
47
48
49
50
52
53
55
57
57

58
58
59
61
63
63
64
65
67
67
68
68
69
70
70
71
72
73

4.3.18. jc_0628: Guideline for using the Saturation Block 74

4.3.19. jc_0650: Block input/output data type with switching function 75
4.3.20. jc_0630: Number of data ports in Multiport Switch block 76
4.3.21. jc_0631: Input of Multiport Switch block to control port 79
4.3.22. jc_0632: Default case port in Multiport Switch block 79
4.4. Initialization 81
4.4.1. jc_0625: Unification of descriptions of external input values as initial values 81
4.4.2. jc_0640: Detection of undefined initial output 82
4.5. Block Parameters 83
4.5.1. db_0112: Indexing 83
4.5.2. db_0110: Tunable parameters in basic blocks 83
4.5.3. jc_0645: Named constant setting 84
4.5.4. jc_0641: Sample time setting 85
4.5.5. jc_0642: Integer rounding mode setting 85
4.5.6. jc_0643: Fixed-point setting 86
4.5.7. jc_0644: Guideline for type setting 87
4.6. Simulink pattern 89
4.6.1. db_0114: Simulink patterns for If-then-else-if constructs 89
4.6.2. db_0115: Simulink patterns for case constructs 90
4.6.3. db_0116: Simulink patterns for logical constructs with logical blocks 91
4.6.4. db_0117: Simulank patterns for vector signals 91
4.6.5. na_0012: Use of Switch vs. If-Then-Else Action Subsystem 93
4.6.6. na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches 94
4.6.7. jc_0658 :Usage rules for Action Subsystem using conditional control flow 98
4.6.8. jc_0623: Use of Memory block vs. Unit Delay block 101
4.6.9. jc_0624: Guideline for using the Delay block 101
4.6.10. jc_0651: Guideline for use when implementing cast 102
4.6.11. jc_0652: Constant related to timer counter 105
4.6.12. jc_0659: Usage restrictions of signal lines inputted to Merge block 105
4.6.13. jc_0656: Guideline for using the Conditional Control block 107
4.6.14. jc_0657: Retention of output value based on Conditional Control Flow block and Merge
block 108
5. STATEFLOW 112
5.1. Stateflow variable settings 112
5.1.1. db_0123: Stateflow port names 112
5.1.2. jc_0700: Unused data in Stateflow block 112
5.1.3. db_0122: Stateflow and Simulink interface signals and parameters 113
5.1.4. db_0125: Scope of internal signals and local auxiliary variables 114
5.1.5. jc_0701: Usable numbers in first index 115
5.1.6. jc_0702: Stateflow parameters and constants 116
5.1.7. jm_0011: Pointers in Stateflow 117
5.2. Basic appearance of state transition 118
5.2.1. db_0129: Stateflow transition appearance 118
5.2.2. db_0137: States in state machines 119
5.2.3.jc_0711: Division in Stateflow 119
5.2.4. jc_0531: Placement of the default transition 120
5.2.5. jc_0712: Execution timing for default transition path 122
5.2.6. na_0038: Levels in Stateflow charts 123
5.2.7. na_0040: Number of states per container 124
5.2.8. jc_0720: Guideline for using subcharting 125
5.2.9. jc_0721: Guidelines for using parallel states 126

© Copyright 2007JMAAB. All rights reserved. 5

5.2.10. jc_0722: Guidelines for setting local variables in parallel states
5.2.11. jc_0723: Prohibited direct transition from external state to child state

5.3. Description of state label
5.3.1. jc_0730: Independence of state name in charts
5.3.2.jc_0731: Slash (/) in the state name
5.3.3.jc_0732 :Distinction between state name and data item name
5.3.4. jc_0733: Order of state action types
5.3.5. jc_0734: Number of state action types
5.3.6. jc_0740: Usage restrictions of action type exit
5.3.7.jc_0501: Format of entries in a State block
5.3.8. jc_0735: Semicolons in state label
5.3.9. jc_0736: Uniform indentations in Stateflow blocks
5.3.10. jc_0737: Uniform spaces before and after operators
5.3.11. jc_0738: Guidelines for writing comments in state actions
5.3.12. jc_0739: Guidelines for describing texts inside states
5.3.13. jc_0741: Timing to update the variables used in the state's transition conditions

5.4. Conditions and conditional actions
5.4.1. jc_0742: Guidelines for writing Boolean operations in condition labels
5.4.2. jc_0770: Placement of conditional statements and action statements
5.4.3. jc_0771: Placement of comments in transition lines
5.4.4. jc_0772: Execution order and transition conditions of transition lines
5.4.5. jc_0752: Parentheses of condition actions
5.4.6. jc_0743: Guidelines for writing condition actions

5.5. State transition
5.5.1. jc_0750: Guidelines for drawing transition lines in Stateflow
5.5.2. jc_0751 : Backtracking prevention in state transition
5.5.3. jc_0754: Transition actions in Stateflow
5.5.4. jc_0753: Condition actions and transition actions in Stateflow
5.5.5. db_0151: State machine patterns for transition actions
5.5.6. na_0013: Comparison operation in Stateflow

5.5.7. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

5.5.8. na_0001: Bitwise Stateflow operators

5.5.9. jc_0655: Prohibited comparison operation of logical type signal in Stateflow
5.5.10. jc_0451: Use of unary minus on unsigned integers in Stateflow

5.5.11. jc_0755: Guidelines for use of increments/decrements

5.5.12. jc_0756: Prohibited use of operation expressions in array indexes

5.5.13. jc_0757: Guidelines for describing condition expressions

5.5.14. jc_0491: Reuse of variables within a single Stateflow scope

5.5.15. jc_0521: Use of the return value from graphical functions

5.6. Internal transition of the state transition
5.6.1. jc_0760: Starting point of internal transition in Stateflow
5.6.2. jc_0762: Prohibited combination of state action and Flow Chart
5.6.3. jc_0763: Usage restrictions of multiple internal transitions
5.6.4. jc_0761: Statement method when using multiple internal transitions

5.7. Flow Chart foundation
5.7.1. db_0132: Transitions in Flow Charts
5.7.2. db_0134: Flow Chart patterns for If constructs
5.7.3. db_0159: Flowchart patterns for case constructs
5.7.4. db_0135: Flow Chart patterns for loop constructs
5.7.5. jc_0773: Unconditional transition of a flow chart

5.8. Flow Chart details

© Copyright 2007JMAAB. All rights reserved. 6

127
127

128
128
131
132
133
133
134
134
135
136
138
139
140
142

143
143
145
146
146
147
148

149
149
150
154
155
156
156
157
158
159
160
161
161
162
162
164

165
165
167
168
169

170
170
171
173
174
175

177

5.8.1. jc_0774: Comments on unconditional transition which has no process
5.8.2. jc_0511: Setting the return value from a graphical function

5.8.3. jc_0775: Number of terminal junctions in Flow Charts

5.8.4. jc_0776: Number of inputs to the terminal junction of Flow Charts

5.9. Event
5.9.1. db_0126: Scope of events
5.9.2. jc_0780: Usage restrictions of events
5.9.3. jc_0781: Function Call from Stateflow
5.9.4. jm_0012: Event broadcasts

5.10. Functions within Stateflow
5.10.1. na_0041: Selection of function type
5.10.2. na_0042: Location of functions
5.10.3. na_0039: Use of Simulink in Stateflow charts
5.10.4. db_0127: MATLAB commands in Stateflow

177
178
179
180

180
180
181
181
182

183
183
184
185
185

6. MISCELLANEOUS: VARIANTS, ENUMERATED TYPE, MATLAB FUNCTIONS

187

6.1. Variant Subsystem
6.1.1. na_0037: Use of single variable variant conditionals
6.1.2. na_0020: Number of inputs to variant subsystems
6.1.3. na_0036: Default variant

6.2. Enumerated type data
6.2.1. na_0033: Enumerated Types Usage
6.2.2. na_0031: Definition of default enumerated value

6.3. MATLAB functions
6.3.1. na_0018: Number of nested if/else and case statement
6.3.2. na_0025: MATLAB function header
6.3.3. na_0034: MATLAB Function block input/output settings
6.3.4. na_0024: Global variable
6.3.5. na_0022: Recommended patterns for Switch / Case statements
6.3.6. na_0016: Source lines of MATLAB Functions
6.3.7. na_0017: Number of called function levels
6.3.8. na_0021: Strings

7. BASIS, LIST OF RULE PARAMETERS

7.1. Basis
7.1.1. Basis category
7.1.2. List of rule basis

7.2. Selectable parameters of each rule
7.2.1. Interpretation
7.2.2. List of rule parameters

8. TERMINOLOGY/SUPPLEMENTARY EXPLANATION

8.1. Commentary on Simulink terminologies
8.1.1. Definition of basic blocks
8.1.2. Definition of port blocks.
8.1.3. Conditional control flow

© Copyright 2007JMAAB. All rights reserved. 7

187
187
187
188

188
188
189

191
191
191
192
192
193
194
194
195

196

196
196
196

200
200
200

207

207
207
207
207

8.1.4. Blocks with State Variables

8.1.5. Branch Syntax with State Variables
8.1.6. The definition of subsystem

8.1.7. The definition of a dictionary

8.1.8. Signal

8.1.9. Parameter

8.1.10. Signal label and signal name
8.1.11. Control Characters

8.1.12. Commentary vector signals/path signal
8.1.13. Boolean type and boolean value
8.1.14. On enumerated types

8.2. Stateflow terminology commentary
8.2.1. Operators available for Stateflow
8.2.2. Transition line condition, condition action, transition action
8.2.3. State Actions and Action Types
8.2.4. State Transition and Flow Chart
8.2.5. Backtrack
8.2.6. Note on flowchart outside state
8.2.7. How to use custom C code

8.3. Initialization
8.3.1. Initial value setting in initialization
8.3.2. List of blocks that have internal initialization values
8.3.3. Initial values of signals registered in the the data dictionary
8.3.4. Example of a block where the external input value is the initial value

208
209
211
211
211
212
212
212
212
213
213

215
215
216
216
217
218
219
221

222
222
223
223
225

8.3.5. Initial value settings in a system configuration that would enable initialization parameters

8.4. Supplement: Commentary on functions
8.4.1. About Atomic Subsystem

9. DETERMINING GUIDELINE OPERATION RULES
9.1. Necessity of process definition

9.2. A version of MATLAB/Simulink

9.3. MATLAB/Simulink setting

9.4. Usable blocks

9.5. Setting of the configuration to be used
9.5.1. Optimization parameters
9.5.2. Other configurations
9.5.3. Configuration settings

9.6. Guideline rules that are used
9.6.1. The adoption of the guideline rule and the setting of the process
9.6.2. The setting of the guideline rule application field and the clarification of the exclusion
condition
9.6.3. The decision on the parameter that is stipulated in the guideline
9.6.4. Guideline checker adoption process determination
9.6.5. Addition of the model analysis process
9.6.6. Rule alteration procedure
9.6.7. Arrangement of development environment

© Copyright 2007JMAAB. All rights reserved. 8

225

227
227

230
230
230
230
230

231
231
231
231

232
232

232
233
233
233
233
233

10. MODEL ARCHITECTURE EXPLANATION 235

10.1. The roles of Simulink and Stateflow 235
10.2. Hierarchical structure of a controller model 237
10.2.1. Types of hierarchies 237
10.2.2. Layout method for top layer 237
10.2.3. : Modeling method for function layers and sub-function layers. 238
10.2.4. Modeling method for schedule layers 238
10.2.5. Modeling method for control flow layers 239
10.2.6. Modeling method for selection layers 240
10.2.7. Modeling method for data flow layers 241
10.2.8. Relation between embedded implementation and Simulink models 242
10.3. AUTOSAR Concept 242
10.3.1. What is the AUTOSAR software platform concept? 242
10.3.2. RCP and AUTOSAR software platform 243
10.4. Single-task and multi-task 243
10.4.1. Single-task 243
10.4.2. Multi-task 245
10.4.3. Effect of connecting subsystems with sampling differences 245
11. SIMPLE CHECKING SAMPLE PROGRAM FOR GUIDELINES 247
11.1. Check by automatic setting 247
11.1.1. na_0004: Simulink model appearance settings 247
11.1.2. db_0043: Model font and font size 247
11.1.3. na_0001: Bitwise Stateflow operators 248
12. UPDATE HISTORY 249
12.1. Termination rule 249
12.1.1. Removed in version 2.2 249
12.1.2. Removed in version 3.0 249
12.1.3. Removed in version 3.1 249
12.1.4. Removed in version 4.0 249
12.1.5. Moved to attachment in version 4.0 250
12.2. The flow of the style guideline revision 250

© Copyright 2007JMAAB. All rights reserved. 9

1. Introduction

1.1. Purpose of these Guidelines

These guidelines stipulate important basic rules for describing Simulink / Stateflow models to allow for a
simple, common understanding by authors and users in operating automotive control system of control
models.

They were created with the following main objectives.

e Readability
e Improvement of graphical understandability
e Improvement of readability of functional analysis.
e Prevention of connection mistake
e Comments and so on
e Simulation and verification
e System to enable simulation
e Easy testing
e Code generation
e Improvement of efficiency of generation code.(ROM,RAM efficiency)
e Securement of robustness of a generation code
e Others

1.2. Guideline template

Guideline descriptions are documented using the following template. Use of this template is also
recommended when creating original guidelines.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority One of Mandatory / Strongly Recommended / recommended.

Scope MAAB / NAMAAB / JMAAB / company name (if adding company rules)
ALL
RX, RY, RZ

MATLAB Y

Version RX and later

RX and earlier
RX through RY

Prerequisites |Links to guidelines, which are prerequisite to this guideline (ID + Title)
Description |Description of the guideline (text, images).

Notes Notes, footnotes.

See also ID including other helpful guidelines.

Last Change |Version number of the Last Change.

Note: This template lists the minimum requirements for a correct understanding of a guideline. New items
may be added to the template as long as they do not duplicate any of the existing items.

1.2.1.1D

An ID consists of 2 lower case letters (identifying the guideline author) and a 4 digit number, separated
by an underscore. An ID is permanent and cannot be changed, and is used when referring to a guideline.

db, jm, hd, ar are IDs used by established members for Verl.0. na, jp, jc, jt are IDs used from Ver2.0
onwards.

Please use letter combinations other than these as ID when adding your own guidelines.

Parenthesized rules, (ID), are rules that have been changed from rules to a document description.
These document description rules have, like other document descriptions, no priority or scope
classification. They describe valuable approaches, examples for the creation of models. They have no
rules that must be specifically adhered to, or counterexamples, but describe a particular approach or
helpful tips.

© Copyright 2007JMAAB. All rights reserved. 10

1.2.2. Title
The Title is unique and is a brief description of the guidelines.

1.2.3. Priority

The priority level is classified as "Mandatory", "Strongly Recommended"”, and "Recommended". Priority
does not only indicate the importance of the guideline, but also considers the gravity of the potential
results if they are violated.

Strongly

Recommended Recommended

Mandatory

e Guidelines that all
companies agree to that
are absolutely essential

e Guidelines that all
companies conform to
100%

DEFINITION

Guidelines that are
agreed upon to be a
good practice, but
legacy models preclude
a company from
conforming to the
guideline 100%

Models should conform
to these guidelines to
the greatest extent

Guidelines that are
recommended to
improve the appearance
of the model diagram,
but are not critical to
running the model
Guidelines where
conformance is
preferred, but not
required

possible; however 100%
compliance is not
required

CONSEQUENCES

If the guideline is violated

o Essential items are e The quality and the e The appearance will not
missing appearance deteriorates conform with other
e The model might not e There may be an projects
work properly adverse effect on
maintainability,
portability, and
reusability

WAIVER POLICY

If the guideline is intentionally ignored,

e The reasons must be
documented

1.2.4. Scope :

The scope of a guidelines is set to one of the following:
e MAAB: Guideline that has been agreed by IMAAB and NAMAAB.
¢ JMAAB: Guideline that has been agreed by the Japan MBD Automotive Advisory Board alone.
¢ NAMAAB: Guideline that has been agreed by the North America MATLAB Automotive Advisory
Board alone.
MAAB includes the subgroups JMAAB and NAMAAB.
"JIMAAB" is a subgroup including automotive manufacturers and suppliers in Japan.
"NAMAAB" is a subgroup including automotive manufacturers and suppliers in the United States and
Europe.

1.2.5. MATLAB version

The guidelines support all MATLAB versions, but some guidelines only support specific versions. The
version information is given in one of the following 5 formats.

© Copyright 2007JMAAB. All rights reserved. 11

ALL: all MATLAB versions.

RX, RY, RZ: specific MATLAB versions.

before RX: MATLAB versions before RX.

after RX: MATLAB versions after RX.

RX through RY: MATLAB versions for RX through RY.
Ver4.0 contains rules for R2008b through R2013a.

1.2.6. Prerequisites
The Prerequisites entry gives the ID and Title for the guidelines that are prerequisite to this guideline.

1.2.7. Description
The Description describes the content in detail, using figures and tables.

1.2.8. See Also

This field contains guideline IDs of other helpful guidelines.
Apart from the MAAB guidelines, the following guidelines are referred to.
¢ Modeling Guidelines for Code Generation(cgsl_)
e Modeling Guidelines for High-Integrity Systems(hisl_)
e NASA Orion Style Guidelines numbers from Orion GN&C MATLAB/Simulink
Standards(Orion_[bn_,ek_,im_,jr_,jh])Ver3.0 are added as related references.
http: //www.mathworks.co.jp/aerospace-defense/standards/nasa.htmi
¢ MISRA SLSF Guidelines (MISRA AC SLSF)
From Ver4.0, MISRA AC SLSF Guidelines, published by MISRA, are added as related references.

The content contained in these guidelines are not included in the text of this document.

The content of these guidelines and the content in the guidelines listed above may vary.

The ultimately correct rules are the MAAB rules, describing the required rules for controller modeling.
They do not correspond to all numbers for the guidelines listed above.

1.2.9. Last Change

This field contains the version number for the Last Change.
However, a version number is not changed for simply printing error corrections or additional explanations.
It lists a modified version which includes changes to the intention of rules, changes in conditions or
additional conditions.

1.3. Organization of these Guidelines

Explanation of this document is described in chapter 1.

Rules are described in from chapter 2 to chapter 6.

Where rules for prohibited use and limited or restricted use with regard to specific blocks or functions
conflict, list the rules for prohibited use first. Then list the rules for limited use.

1. Prohibited use rule : Recommended
2. Limited / restricted use rule : Strongly Recommended (or Mandatory)
This explanation concerns the listing order. Investigate the adoption of these two rules for the operation
procedures.

Rationals of rules establishment and adjustable parameters of rules are listed in chapter 7.
Of the term as for 8 chapters for beginners comment.

Chapters 9 to 11 the model architecture and operation required by advanced users .
Change history of these guidelines is described in chapter 12.

© Copyright 2007JMAAB. All rights reserved. 12

2. Naming Conventions

2.1. Naming Conventions - Overall summary

2.1.1. Rule IDs for characters that can be used in names

Character restrictions and characters that can be used in names are described in the following rules.
ar_0001: Usable characters for file names
ar_0002: Usable characters for folder names
jc_0201: Usable characters for Subsystem name
jc_0211: Usable characters for Inport block and Outport block
jc_0222: Usable characters for signal line and bus names
jc_0232: Usable characters for parameter names
jc_0231: Usable characters for block names

2.1.2. Rule IDs for character length

Limitations relating to the length of name lengths are described in the following rules.
jc_0241: Length restrictions for file names
jc_0242: Length restrictions for folder names
jc_0243: Length restrictions for Subsystem names
jc_0244: Length restrictions for Inport and Outport names
jc_0245: Length restrictions for signal and bus names
jc_0246: Length restrictions for parameter names
jc_0247: Length restrictions for block names

2.1.3. List of naming rule constraints "character type / character length”

Avalilability for use File name, Subsystem the code is generated | Other blocks
by character type folder for, Inport/Outport, signal name,
bus name, parameter name
single-byte O O O
alphabetic character
single-byte O not allowed as the first character, otherwise allowed
numerical character
single-byte O not allowed for first or last character, no two underscores
underscore in succession
single-byte space not allowed @)
line break not allowed not allowed for
first or last
character, no two
spaces in
succession
other characters X X X
(local language)
Length limitations File name, Subsystem the code is generated | Other blocks
folder name for, Inport/Outport, signal name,
bus name, parameter name
character length 3 to 63 characters (example) ~63 characters

2.2. General Rules

2.2.1. ar_0001: Usable characters for file names

ID: Title ar_0001: Usable characters for file names

© Copyright 2007JMAAB. All rights reserved. 13

Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes

Last Change

Mandatory
MAAB

ALL

File names are subject to the following constraints.

Subject of Applications
Please operate by determining extention to be subject of application of the rules.
When application of this rule is limited to model names, the 2 types are [mdl] and [sIx]

Valid form
filename = name.extension
. name: may not start with a numerical character, no spaces,no any MATLAB
Keywords.
) extension: no spaces

Uniqueness

o None of the file names in a new project folder may be duplicates.

There may be no identically named models, including in subfolders via a MATLAB path.

Usable characters

Name:
abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Extension: (Extensions are determined individually for used tools.)
abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Underscores
Name:
Underscores may be used to separate words
Underscores may not be used in succession
Underscores may not be used as the first character
Underscores may not be used as the last character
Extension: (Extensions are determined individually for used tools.)
Underscores may not be used

Occasions when both testl.slx and testl.m exist.

When running testl by command line, testl.m is not run and the testl.slx model file can
open. In other words, constants described in testl.m cannot be loaded into the MATLAB
workspace.

If there are model files with identical names in a folder without a path, please use switching
the path according to operation.

V4.0

2.2.2. ar_0002: Usable characters for folder names

ID: Title
Priority
Scope

ar_0002: Usable characters for folder names
Recommended
MAAB

© Copyright 2007JMAAB. All rights reserved. 14

MATLAB

Version ALL

Prerequisites
A folder name conforms to the following constraints:

Valid form
directory name =name
name: may not start with a numerical character, no spaces

Usable characters
name:
_ abcdefghijklmnopqgrstuvwxyz
Description A BCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _
Underscores
name:
e can use underscores to separate words
e cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore

There is no problem even if same folder names are included into path.. (No need of identity.)
Notes As of R2013b, even if local language is used in folder name, C source code can be
generated.

Last Change V4.0

2.2.3. jc_0241: Length restrictions for file names

ID: Title jc_0241: Length restrictions for file names
Priority Recommended

Scope JMAAB

MAT_LAB ALL

Version

Prerequisites

- File names should be made up of 3 to 63 characters (not including dots and extension).
Description

Notes Past versions limited the number of characters to 63 for model referencing.
See Also
Last Change (V4.0

2.2.4. jc_0242: Length restrictions for folder names

ID: Title jc_0242: Length restrictions for folder names
Priority Recommended

Scope JMAAB

MATLAB ALL

Version

Prerequisites

. Folder names on every level of a model should be made up of 3 to 63 characters.
Description

It is better to restrict the overall number of folder characters (full path name).

Notes Long full path names may lead to problems such as incomplete display of the path name in

© Copyright 2007JMAAB. All rights reserved. 15

Last Change

the GUI that is used for the project.
V4.0

2.3. Internal model rules

2.3.1. jc_0201: Usable characters for Subsystem names

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes

Last Change

jc_0201: Usable characters for Subsystem names
Strongly Recommended
MAAB

ALL

The names of all subsystem blocks should conform to the following constraints:
Valid form
name:
e should not start with a number
e should not have blank spaces
e should not have carriage returns
Usable characters
name:
abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _
Underscores
name:
e can be used to separate words
e cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore

Subsystems subject to this are subsystems subject to code generation.

Subsystems (Model-Wide Utilities/Model Info etc.) that have no Input/Output ports are
classified in the annotations, and therefore not subject to this rule.
Also check whether function names for code generation will be subject to this rule.

V2.2

2.3.2.jc_0211: Usable characters for Inport block and Outport block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0211: Usable characters for Inport block and Outport block
Strongly Recommended
MAAB

ALL

The names of all Inport blocks and Outport blocks should conform to the following
constraints:
Valid form
name:
e may not start with a numerical character
e no spaces
e may not include line breaks

© Copyright 2007JMAAB. All rights reserved. 16

Usable characters

name:

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores

name:

Underscores may be used to separate words
Underscores may not be used in succession
Underscores may not be used as the first character
Underscores may not be used as the last character

Last Change V2.2

2.3.3.jc_0222: Usable characters for signal line and bus names

ID: Title jc_0222: Usable characters for signal line and bus names
Priority Strongly Recommended

Scope JMAAB

MAT.LAB ALL

Version

Prerequisites

Indicates the constraints on signals with a name.
Valid form
name:
e may not start with a numerical character
e no spaces
e no control characters
e may not include line breaks
Usable characters
name:

Description |abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores
name:
e Underscores may be used to separate words
e Underscores may not be used in succession
e Underscores may not be used as the first character
e Underscores may not be used as the last character

Notes
(scalars, vectors, busses).

Last Change (V4.0

2.3.4. jc_0232: Usable characters for parameter names

ID: Title jc_0232: Usable characters for parameter names
Priority Strongly Recommended

Scope JMAAB

MATLAB ALL

Version

Prerequisites

© Copyright 2007JMAAB. All rights reserved. 17

The naming convention for signal lines does not differentiate between signal line type

Indicates the constraints on signals with a name.
Valid form
name:
e may not start with a numerical character
e no spaces
e no control characters
e may not include line breaks
Usable characters
name:

Description |abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores
name:
e Underscores may be used to separate words
e Underscores may not be used in succession
e Underscores may not be used as the first character
e Underscores may not be used as the last character

Last Change (V4.0

2.3.5.jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites jjc_0201: Usable characters for subsystem names

All block names are subject to the following constraints.
Valid form
name:
e should not start with a number
e should not have blank spaces
e should not include double-byte characters

Description . can have carriage returns
Usable characters
name:

abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Notes This rule does not apply to subsystem blocks, Inport/Outport blocks.
Last Change V2.0

2.3.6. jc_0243: Length restrictions for subsystem names

ID: Title jc_0243: Length restrictions for subsystem names
Priority Strongly Recommended

Scope JMAAB

MAT.LAB ALL

Version

© Copyright 2007JMAAB. All rights reserved. 18

Prerequisites
Subsystem name lengths should be 3 to 63 characters.

P, sldemo_engine/valve timing/positive edge to dual edge conversion | 5D
I7IUF) REE) Y-IERRYV) BEERD) JOvI/BBER) 2Ial—33>(S) @A) 3—RK(C) Y—IuT
- 8 ¢ L Ee-EEOP " ©->@ - E-
EFN FIH— = ’ positive edee to dual edge conversion X [valve timing }
4 [’a sldemo_engine ® | «[pa]valve timing » [Pa] positive edge to dual edge conversion
[Pa| Combustion
[Pa] Compression &
[pa| Drag Torque ; 1 -
L [Pa| Engine Dynamics E3 =
Description 4 [Pa] Throttle & Manifold _ Unt Deloy
[Pa] Intake Manifold =
Pa) Throttle 4
4 [pa| valve timing Gsin
[2] TDC and BDC detection
positive edge to dual edge conversion
k Trigger

Number of characters for
_ subsystem name)

overall number of characters = sldemo_engine/valve timing/positive edge
to dual edge conversion

It is better to restrict the overall number of characters (full path name including model

Notes
name) too.

See Also
Last Change (V4.0

2.3.7. jc_0244: Length restrictions for Inport and Outport names

ID: Title jc_0244: Length restrictions for Inport and Outport names
Priority Strongly Recommended

Scope JMAAB

MAT_LAB ALL

Version

Prerequisites

- Port name lengths should be 3 to 63 characters.
Description

See Also
Last Change V4.0

2.3.8. jc_0245: Length restrictions for signal and bus names

ID: Title jc_0245: Length restrictions for signals and bus names
Priority Strongly Recommended

Scope JMAAB

MATLAB ALL

Version

Prerequisites
Description |Signal and bus name lengths should be 3 to 63 characters.

© Copyright 2007JMAAB. All rights reserved. 19

V6_signal12_Contrl1_EgRpm1 outt

5

Signal and bus name

Bus signals can be layered.
It is better to restrict the overall number of characters (full path).

@ abc =i
@ efg =I
@ hij ;I bus_name
@ Imn =I
(JIE) opq "1
n5
bus_name_finla Zabo>
@ rst =i <abcdefghijklmn>
@ uvw =I
@ xXyz ;I bus_name2
@ abcdefghijklmn =I
@ fghij "1
n10
|
gﬂ) kimn =!
I bus_name3
N NG 1 _
= '

Overall number of characters.

Out1

Out2

-
"% Function Block Parameters: Bus Selector

S

BusSelector

bus’ to output a single bus signal.

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the signals in the input bus. Use the Select button to select the output signals.
The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check ‘Output as

Parameters
Filter by name Find Selected signals
= ; = bus_name_finlabus_name1 (signal 1).abc
Signals in the bus bus_name_finla bus_name?2 (signal 2).abcdefzhi
4 bus_name_finla
> bus_name1 (signal 1) ~ _
4 bus name? (signal 2)
ki Overall
XyzZ
abcdefzhijklmn number of
ehij characters
bus_narme2 (signal 3)
<2 1 »
[7] Output as bus
‘)‘ [OK] [Cancel] [Help

Up
Down

Remove

Apply

See Also
Last Change (V4.0

2.3.9. jc_0246: Length restrictions for parameter names

ID: Title jc_0246: Length restrictions for parameter names
Priority Strongly Recommended
Scope JMAAB

MATLAB ALL

© Copyright 2007JMAAB. All rights reserved. 20

Version

Prerequisites

Description

See Also

Parameter name lengths should be 3 to 63 characters.

Last Change (V4.0

2.3.10. jc_0247: Length restrictions for block names

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description
See Also

jc_0247: Length restrictions for block names

recommended
JMAAB

ALL

Block name lengths should be 3-63 characters.

Last Change (V4.0

2.4. Notes on other used characters

2.4.1. na_0035: Adoption of naming conventions

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes

na_0035: Adoption of naming conventions
Recommended
MAAB

ALL

Adoption of a naming convention is recommended. A naming convention provides
guidance for naming blocks, signals, parameters and data types.
Naming conventions frequently cover issues such as:

Readability:
e Use of underscores
e Use of capitalization
Encoding information:
e Use of meaningful names
Standard abbreviations and acronyms
Data type
Engineering units (system of units)
Data ownership
Memory type

This is an example of a rule relating to readable capitalization.

» All-capital parameters should define storage class..

> All-capital signal (Simulink, mpt objects) names should not be used.
Names are defined for signal lines (label names), but signal line names that only have an
annotative significance without defining Simulink or mpt objects, are given in all capitals to
distinguish them from global signals.

© Copyright 2007JMAAB. All rights reserved. 21

Acronym is a kind of abbreviations mainly used in European languages. It is created from
initial characters of compound word which consists of several words.

See Also
Last Change |V4.0

2.4.2. jc_0251: Naming restrictions for signals and parameters.

ID: Title jc_0251: Naming restrictions for signals and parameters.
Priority Mandatory

Scope JMAAB

MAT'LAB ALL

Version

Prerequisites

There are 2 constraints on signal names and parameter names inside a model.

1. Please do not use any reserved words, function names or operator names used by
MATLAB such as pi, true and false .

2. Please do not use any words reserved in MATLAB auto coding .

Even when a simulation has been run, problems may on occasions arise when
automatically generating code or when integrating it.
Parameters that may not be used can be checked using iskeyword, but this function only
checks the names that have been registered as MATLAB keywords. Function names and
operator names cannot be checked with this function.
A number of examples is listed below, but care must be taken as there are numerous
Description |examples apart from these.
® MATLAB keywords
‘break’, ‘'case’, ‘catch', 'classdef, ‘continue', ‘else’', ‘elseif’, ‘end',
'for','function’,
‘global’, 'if', ‘otherwise', ‘parfor', ‘persistent’, ‘'return’, ‘spmd', ‘'switch', ‘try’
‘while'
® Function names, constant names, operator names
‘eps','Enf','intmax’,'intmin’,'NaN’,'pi','realmax’,'realmin’,'true', false','inf'

The following are reserved by MATLAB for auto coding.
e const, TRUE. FALSE. infinity, nil, double, single, or, enum

Reserved words are defined in the Simulink Coder documentation.

Notes http: //lwww.mathworks.co.jp/jp/help/symbolic/reserved-variable-and-function-names.htmi

See Also
Last Change V4.0

2.4.3. na_0014: Use of local language in Simulink and Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow
Priority Strongly Recommended

Scope JMAAB

MATLAB ALL

Version

Prerequisites

The local language should be used only in descriptive fields.

Description Descriptive fields are text entry points that do not affect code generation or simulation.

© Copyright 2007JMAAB. All rights reserved. 22

Examples of descriptive fields include the [Description] field in the Block Properties dialog
box.

Simulink Example:
e The description field in the Block Properties dialog box.

. Propert

General || Block Annotation || Callbacks |

lzage

Dezcription: Text saved with the block in the model file.

Priorityv: Specifies the block's order of execution relative to other blocks in the
zatme model.

Tag: Text that appears in the block label that Simulink eenerates.

Dezcription:

Local languaee can be used. ;l

e Text annotation directly entered in the model
O HeE & ER <SS 2=

Description: Local language can be used.

Outl In1

¥

Out? In

¥

Stateflow Example:
e The Description field in chart or state Properties

-
State

Mame: State

Parent: ichart} SF sample/TChart?

Breakpoints: [~ State During [~ State Entry I~ State Exit

I~ Output State Activity

Description:

Local language can be used.

Document Link I

oK I Cancel | Help Apply

e Annotation description added using Add Note

© Copyright 2007JMAAB. All rights reserved. 23

Local language can be used

[condition]

i
Add Note | 7
i

Sopy
Fagte

Back

{action}

There are also many other places in masked subsystem Disp that correspond to
Description fields, such as user tags, inside block annotations and commented out
subsystems.

» Howto select “comment out”

—r

sldemo_engine Explore

@® ‘i‘sldemo,engine > Open

H
Cut Ctrl+X

%
Tottetrgs T By Copy Ctrl+C

Paste Ctri+V

Open In New Tab —
Open In New Window d sut

U e e

Trottle Ang

(degr Commant Theough Ol
Comment Out Ctrl+Shift+X
Detete Del

[

Find Referenced Variables N
Subsystem & Model Reference »

Format » Jmics
Rotate & Flip »

Arranne >

Description fields may vary between versions.

In recent Simulink versions the use of local language is allowed for subsystem names and
block names.

Both simulation and code generation are possible if only characters that allow for code
generation are designated in the function setting.

un uint8 :l
MC Q sum_out I ¢ ¢ s T
Notes Set function
equal_to_count |boolean Setting
; s // beforehand
a2 EX -
” s (: ——»In Outf———»()
Lt &5 = Input Output
ez | wtchiout I-FERD-IESETAL
X

© Copyright 2007JMAAB. All rights reserved. 24

Contents

Summary

Subsystem Report
Code Interface Report

Generated Code
[-] Model files

rtwdemo rtwintro.c

| rtwdemo rtwintro.h
| rtwdemo rtwintro private.h
rtwdemo rtwintro types.h

Amplifier.c
Amplifier.h

[+] Shared Utility files (8)
[+] Interface files (1)
[+] Other files (1)

* Note that the functions contained in this file are part of a Simulink
*/moo’e/, and are not self-contained algorithms.
*,

finclude “Amplifier.h”
/* Include mode! header file for global data »/
#include "rtwdemo_rtwintro.

#include “rtwdemo_rtwintro_private.h”

‘Root)/F— FEFO—HNEETIF #/

/* Start for trigger system
\iOId Amp | if ier_Start (void

Even if using local language for
subsystem names, simulation execution

and code generation are both possible. NEFTR)
EETRF
* TriggerPort: "<S/Trigger’
|f (rtwdemo_rtwintro B.equal to_count &&
(rtwdemo_rtwintro PrevZCX.RhJeXg_Trig ZCE 1= POS_ZCSIG)) {

/% Qutport. " Root>/Quiput™ incorporates:

* Gain: '<S1>/Gain’

* Inpert: " <Root>/ Tnput’

*,

rtwdemo_rtwintro Y.Output = rtwdemo_rtwintro U. Imput << 1;
rtudemo_rtwint ro_PrevZCX.RhJeXg Trig _ZCE = (ui T)

(rtwaemo rtuint ro B.eaual _to_count ? (int32 T)POS ZCSIG = (int32_T)

1 /% End of Qutputs for SubSystem:

"Rootd/I— FERO—HNEZTIF #/ 3

]|

m

See Also |

Last Change |V2.0

© Copyright 2007JMAAB. All rights reserved.

25

3. Model Architecture

3.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes

Last Change

na_0006: Guidelines for mixed use of Simulink and Stateflow
Strongly Recommended
NAMAAB

ALL

The choice of whether to use Simulink or Stateflow to model a given portion of the control
algorithm functionality should be driven by the nature of the behavior being modeled.

The details are this. [10.1 The roles of Simulink and Stateflow]
V4.0

3.1.2. na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Last Change

na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines
Strongly Recommended
MAAB

ALL

na_0006: Guidelines for Mixed use of Simulink and Stateflow

Within Stateflow, the choice of whether to use a Flowchart or a state chart to model a given
portion of the control algorithm functionality should be driven by the nature of the behavior
being modeled.
® [f the primary nature of the function segment is to calculate modes of operation or
discrete-valued states, use state charts. Some examples are:
- Diagnostic model with pass, fail, abort, and conflict states
- Model that calculates different modes of operation for a control algorithm
® [f the primary nature of the function segment involves if-then-else statements, use
Flowcharts or Truth Tables.

Specifics:
If the primary nature of the function segment is to calculate modes or states, but if-then-
else statements are required, add a Flowchart to a state within the state chart. (See
5.7Flow Chart foundation)

V2.0

3.1.3. db_0143: Similar block types on the model levels

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0143: Similar block types on the model levels
Strongly Recommended
MAAB

ALL

A structure layer(Function or Schedule layer) and data flow layer shall not be mixed at the
same layer. Usable block types in the model layers should be restricted and the list of

© Copyright 2007JMAAB. All rights reserved. 26

usable block types according to model layers should be prepared and agreed upon. To
understand layer concept, refer 10.2 Hierarchical structure of a controller model.

However, the following blocks are not limited to a layer, and can be used on all levels.
Blocks which can be placed on every model level (blocks that can be used on all levels)

Block types Examples of block icons

Inport

Outport

Mux

Demux

Bus Selector

>
H 1)
Bus Creator }
;'——1
.,_—Fl
=
[A

SelectOor

Ground

Terminator

From

Goto [A]
Merge Merge |-
1
Unit Delay®™ - f
—
Rate Transition —+F
1111

© Copyright 2007JMAAB. All rights reserved. 27

Notes

Last Change

Data Type Conversion Convert [

Data Store Memory DSh
If iful =0} B
u
sk B
case 1] p
Case ui
default:
Function-Call Generator il p

Function-Call Split

Trigger®

Enable®

Action port® Action

4) Not only the Unit Delay block but all similar blocks like the Delay block are treated in the

same manner.

2) In R2011a and earlier, Enable block is not allowed at the root level of the model.

3) In R2008b and earlier, Trigger block is not allowed at the root level of the model.

Note: If the Trigger or Enable blocks are placed at the root level of the model, then the
model will not simulate in a standalone mode. The model must be referenced using the
Model block.

4) Action port is allowed at the root level of the model.

Regarding kinds of laysers, please see appendix.

Establish standards for each project on whether to include libraries or virtual subsystems

within the scope of "Subsystems only".

V4.0

3.1.4. db_0144: Use of Subsystems

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0144: Use of Subsystems
Strongly Recommended
MAAB

ALL

Blocks in a Simulink diagram should be grouped together into subsystems based on
functional decomposition of the algorithm, or portion thereof, represented in the diagram.
Avoid grouping blocks into subsystems primarily for the purpose of saving space in the
diagram. Each subsystem in the block diagram should represent a unit of functionality
required to accomplish the purpose of the model or submodel. Blocks can also be grouped
together based on behavioral variants or timing.

© Copyright 2007JMAAB. All rights reserved. 28

If creation of subsystems is required for readability issues, then a virtual subsystem should
be used.

Last Change |V2.2

© Copyright 2007JMAAB. All rights reserved. 29

4. Simulink

4.1. Diagram appearance

4.1.1. na_0004: Simulink model appearance

ID: Title |na_0004: Simulink model appearance
Priority |Recommended

Scope |MAAB

MATLAB ALL

Version

Prerequisites |

model is released.

The model appearance settings should conform to the following guidelines when the

Setting

Model Browser unchecked
Screen color white
Status Bar checked
Toolbar checked

Zoom factor

Normal (100%)

Description

Signal Display Options

Background color white
Foreground color black
Execution Context Indicator unchecked
Library Link Display none
Linearization Indicators checked
Model/Block 1/0 Mismatch unchecked
Model Block version unchecked
Sample Time Colors unchecked
Sorted Order unchecked

Setting

Port Data Types unchecked
Signal Dimensions unchecked
Storage Class unchecked
Test point Indicators checked
Viewer Indicators checked

© Copyright 2007JMAAB. All rights reserved.

Wide Non-scalar Lines checked

These are an example. Please set standards for each project.
Notes

See Also MISRA AC SLSF 023A
Last Change |V2.0

4.1.2. db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size
Priority Strongly Recommended

Scope MAAB

MAT.LAB ALL

Version

Prerequisites

All text elements (block names, block annotations and signal labels)
except text annotations within a model must have the same font style and font size.

Description
P Fonts and font size should be selected for legibility.
The selected font sould be directly portable (e.g. Simulink/Stateflow default font) or
Notes convertible between platforms (e.g. Arial/Helvetica 12pt).

Last Change |V2.0

4.1.3. db_0042: Port block in Simulink models

ID: Title db_0042: Port block in Simulink models
Priority Strongly Recommended

Scope MAAB

MAT_LAB ALL

Version

Prerequisites

In a Simulink model, the ports comply with the following rules:

e Inports should be placed on the left side of the diagram, but they can be moved in
to prevent signal crossings.

e Outports should be placed on the right side, but they can be moved in to prevent

Description signal crossings.

¢ Duplicate Inports can be used at the subsystem level if required but should be

avoided if possible.
o Duplicate Inports cannot be used at the root level.

© Copyright 2007JMAAB. All rights reserved. 31

Correct:

@;‘R,,—'E 0z Cae

<SlipEst>
P
L

SlipCsalc

“VOZ_Calo
CZRati
<Throt_Reg®
VozCal

—~ (1N .
Oy >

SlipCslc

Notes on the incorrect model

lines.

¢ Inport 2 should be moved in so it does not cross the feed back loop

e OQutport 1 should be moved to the right hand side of the diagram

Last Change V2.0

4.1.4. jm_0002: Block resizing

ID: Title jm_0002: Block resizing
Priority Mandatory

Scope MAAB

MATLAB ALL

Version

Prerequisites

All blocks in a model must be sized such that their icon is completely visible and
recognizable. In particular, any text displayed (e.g. tunable parameters, filenames,

equations) in the icon must be readable.

However, when it is difficult to resize subsystems with many inputs and outputs, the content
of the icon should be made visible in an alternative way.

Description |Correct:

|tunab|e_parameter_\ralue I; - 1
Constant + z+0.5
. 0 Discrete
) > . Transfer Fcn
-(double) 2
Gain From
Sum Diata Type
Conversion
Incorrect:

© Copyright 2007JMAAB. All rights reserved. 32

input_signall
input_signal2
input_signal3 output_signal
input_signald

input_signals

subsystem

Canstant
Dlscrete
)@p :> Transfer Fcn
Gai Frarm Sum DUb
ain
Data Type
Corversion

This guideline requires resizing of blocks with variable icons relying on option settings or
blocks with variable number of inputs and outputs. However, in some cases, it may not be
practical or desirable to resize the block icon of a subsystem block so that all of the input
and output names within it are readable. In such cases, you may hide the names in the icon
by using a mask or by hiding the names in the subsystem associated with the icon. If you do
this, the signal lines coming into and out of the subsystem block should be clearly labeled in

Notes

close proximity to the block.

Last Change V2.0

4.1.5. db_0142: Position of block names

ID: Title db_0142: Position of block names
Priority Strongly Recommended

Scope MAAB

MAT_LAB ALL

Version

Prerequisites

input_signsl2
input_signaidtput_signal
input_signald

subsystermn

If shown the name of each block should be placed below the block.

Correct:
1 0.05z
I:} Eny H:L- Raw .- =195 En ;R MFilt @
Description EngSignal_LowPass
Incorrect:
TransSignal_LowPass
_ 0.05z _
2 TransRPMRaw ™ -0 08 TransRPMFilt
Last Change (V2.0
4.1.6. jc_0061: Display of block names
ID: Title jc_0061: Display of block names
Priority Recommended
Scope MAAB
MAT_LAB ALL
Version

Prerequisites

® Display block names for blocks which have a functional requirement to have the
name displayed, and for blocks with names that have significance.

Description

Examples of blocks with function names instead of block names.

© Copyright 2007JMAAB. All rights reserved. 33

0 Out 0.05z
| Ot L
z0.95

FuelRateMonitor EngineSpeedFilter Throttletrbitration

® No block names are displayed for blocks to which all of the following applies.
* |ts function is understood from its appearance.
(actual blocks are defined for each development project)
* No changes to default block names apart from the number at the end.

Examples of blocks where names are not displayed

. 1
— B 3
min - =qrt e F

7

X AMD LCIN I

—a

[a] [4] <Enter hodel Mame>]

Through sldiagnostics (model name), the block classification and numbers used in the
model that is used are known.

Based on the results of this command we can infer which blocks are well-know and which
ones aren't.

In line with our own training curriculum, it would be better to display the block names for
blocks whose function is not that well-known.

See Also MISRA AC SLSF 026A
Last Change V4.0

.I.l(l-'-

Notes

4.1.7. db_0140: Display of block parameters

ID: Title db_0140: Display of block parameters
Priority Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites
Important block parameters must be displayed.
In R2011b and later, masking basic blocks is a supported method for displaying the

Description information. This method is allowed if the base icon is distinguishable.

Correct:

© Copyright 2007JMAAB. All rights reserved. 34

1
i - p
il
— states = reset
inital=10
tzample=.01
2.0
5 , A Merge b
+0.5
tzample=-1 inital=[10 4]

'a, Block Properties: Unit De_ M

General | Block Annotation ‘ Callbacks ‘
Usaze

s

Text that appears below the block’s label. Enter the text in the annotation field. The text may
include any of the block property tokens in the Block property tokens list. Simulink replaces each
token with the value of the corresponding property in the generated annotation. Click the >> button

to enter the selected token in the annotation field. Text can be edited on the right side edit field.
See example syntax on the bottom.

Block property tokens: Enter text and tokens for annotation:

IC=%<InitialCondition>

%#<CodeGenStateStorageTypeQualifier> »
¥<Commented>
%<DataTypeOverride_Compiled>
%<Description>
%<Diagnostics>
%<DropShadow>
¥<ForegroundColor>
%<HDLData>
¥<Handle>
¥<HiliteAncestors>
¥<I0SignalStrings>
H<I0Type>
¥<InitialCondition>
%<InputProcessing>
¥<InstantiateOnload>
¥<IntrinsicDialogParameters>
%<LibraryVersion>
%¥<LineHandles>

%<LinkStatus>
I Y MdmolS ¥ Example syntax:

< m » Name=%<Name>

[ok][Cancel H Help] Apply

Correct: Masked block
Use the display function by masking the basic block

y L
z

io=-1

Lhit Delay

© Copyright 2007JMAAB. All rights reserved. 35

2t Mask Editor : Unit Delay _

Icon & Ports | parameters & Dialog Initializationl Documentationl

Options Icon drawing commands

Block frame plot (0,0,0,1);

plot (0,0,1,0);
ICtext=get_param(gch,’InitialCondition’);
textA=["1C=",ICtext];

| text(0.3,0.1,textd); I

Icon transparency

{Transparent v

p\zjtoscale v !
l Icon rotation

Fixed v
Port rotation ' f

Default 2z }

Examples of drawing commands

! Command [port_label {label specific ports) v]
=
Syntax port_label('output’, 1, 'xy") .
[Unmask H Preview ‘ P oK g[Cancel H Help H Apply]iJ

Incorrect: Because of mask,base icon of masked block cannot be seen.

)y =1 P

Lhit Delay1

© Copyright 2007JMAAB. All rights reserved. 36

=
2 Mask Editor : Unit Delay1 . o () S

Icon & Ports | parameters & Dialogl Initialization | Documentation

Options Icon drawing commands

Block frame |ICtext=get _param(gch, InitialCondition’);
[textA=["1C=",ICtext];

Visibl v
jelie \disp (textA)s]

Icon transparency

Opaque v
; = v\h [
Autoscale v

Icon rotation
| Fixed v
Port rotation

\ Default -

Examples of drawing commands

Command port_label (label specific ports) v

i } Syntax port_label('output’, 1, 'xy’)

Preview [OK H Cancel H Help H Apply }

Displaying properties is a way to realize to show block parameters.
Necessary property information can be added on [Block Annotation] tab.
The block parameters that must be displayed will change depending on the process.

Notes Please change the required information for each process.
The parameters considered to be important vary depending on the used Simulink
version.

See Also MISRA AC SLSF 026E

Last Change V4.0

4.1.8. db_0032: Simulink signal appearance

ID: Title db_0032: Simulink signal appearance
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites

Please adhere to the following rules for signal lines.
e Should not cross each other, if possible.
e Should bend at right angles (only use vertical and horizontal lines, do not draw them

diagonally)
o e Are not drawn one upon the other.
Description e Should not cross any blocks.

e Should not split into more than two sub lines at a single branching point (cross-
shaped connections are not permitted).

Correct: Incorrect:

© Copyright 2007JMAAB. All rights reserved. 37

1

Constant

hijl
Ll ==}

Terminator

e

Temminatard

Teminator2

Terminatar

o |

1

Constant

Lol |

Terminatard

Terminatarz

Vertical line that is crossed is now get off holizontal line.

(1 F > 1)
Ini Outi
—CD)

Out?

Notes

As a result, the cross, the difference of the branch is now clear.
e Should not cross each other, if possible..
e Should not split into more than two sub lines at a single branching point.
Above two rules were made because the branch and cross is hard to recognize.
You can be less restrictive in R2014a and later. Please determine whether adopt it or not
based on the version you use.

Last Change V2.0

4.1.9. db_0141: Signal flow in Simulink models

ID: Title db_0141: Signal flow in Simulink models
Priority Strongly Recommended

Scope MAAB

MAT_LAB ALL

Version

Prerequisites

e Signal flow in a model is from left to right. (Exception: Feedback loops)

e Sequential blocks or subsystems are arranged from left to right. (Exception: Feedback
loops)

e Parallel blocks or subsystems are arranged from top to bottom.

(0
Input! [TmplutAt TmpOut B1
mm Pl ,—»m»mm outbuta
%Q_’M"E I Outete
s & rens s —w(3)
DeSCprtIOﬂ Inu::(D nmzum
Inputl e l o Jwﬂ
Csosme| Signal flow should be drawn from left to right)
}wpui 2 OutputF
v
A ! I N~ r
Goto
Gz
Inputd Gl
Last Change (V2.0
© Copyright 2007JMAAB. All rights reserved. 38

4.1.10. jc_0110: Direction of block
ID: Title jc_0110: Direction of block

Priority Strongly Recommended
Scope JMAAB

MAT_LAB ALL

Version

Prerequisites [db_0141: Signal flow in Simulink models
Any blocks other than blocks with Delay blocks (e.g. Unit Delay) should not be rotated or

reversed.
Correct:
(@D > =0 D

Int Outl
—a

- Switch
Constant *

+

Gainl

1

z

Unit Delay
Only the Unit Delay block is reversed.
Incorrect:
Constant1
»H >=0 >
Description In outl
Constant
Gain Unit Delay
The Gain block is also reversed.
Incorrect:

Int

[——
Constant

r
Add

1 >

Constant1 Product Abs| &

Outl

X

The signal flow is drawn from left to right, but the blocks are used vertically.

See Also
Last Change V4.0

© Copyright 2007JMAAB. All rights reserved. 39

4.1.11. jc_0111: Direction of Subsystem

ID: Title jc_0111: Direction of Subsystem
Priority Strongly Recommended

Scope MAAB

MAT.LAB ALL

Version

Prerequisites |jc_0110: Direction of block

The direction of the subsystem must not be rotated or reversed.
Correct:

I —
Inl Duti 1 e 1)
L b Qutt

Subsystem

i Cutl
Subzystem
-

el
- L= |
Description Linit Celay

Incorrect:

G

In1
2 Out

Subsystem

1
- —out ni

z
Linit Delay

Subsystem

Last Change |V2.0

4.1.12. jc_0653: Guidelines for avoiding algebraic loops between subsystems

ID: Title jc_0653: Guidelines for avoiding algebraic loops between subsystems
Priority Strongly Recommended

Scope JMAAB

MAT_LAB ALL

Version

Prerequisites

When using Delay blocks (e.g. Unit Delay blocks) with the purpose of preventing algebraic

loops in feedback loops across subsystems, they must be placed on the outside of the

subsystem.

Rationale:

® [f a Delay block is placed inside a subsystem, it is difficult to know where it has been
placed, and the Delay may be duplicated. Placing it on the outside makes it explicit.

® Delay blocks inside a subsystem decrease its reusability.

Description |® Inspection times will be longer due to the dependence on past values.

© Copyright 2007JMAAB. All rights reserved. 40

Correct:
The Delay block is placed outside the subsystem

ki

.
g
.
g
s
-

Tubgvrbemd Bubswsbemd

Incorrect:
The Delay block is placed inside the subsystem

L p——

|
|
|
|
|
|
|
%

¥
E
g

-

Subrdya taiml

See Also
Last Change (V4.0

4.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks
Priority Strongly Recommended

Scope MAAB

MAT.LAB ALL

Version

Prerequisites

Visual depiction of signal flow must be maintained between subsystems.
® Use of Goto and From blocks is allowed in the following cases:
Description > At least one signal line is used between connected systems.
» Subsystems connected in a feed-forward and feedback loop have at least one
signal line for each direction.

© Copyright 2007JMAAB. All rights reserved. 41

Correct:

uelRgst
[FFrEs] e Fu)
EngRFMCor FusFau
FuslFilter
FueFault TotalTorg
| Engren SpkRast] »{2)
-—p-—p Fu o f————fpe [EngRPMCET]

Incorrect:

e T T] [TFe=iFrm
e WEst | e [FusiPWESD uel
waEn

0
)

This rule is to visually clarify the connection between subsystems.
Notes Using Goto and From blocks to create buses or connect inputs to merge blocks are
exceptions to this rule.

Last Change V4.0

Rule for bus added by NAMAAB is unclear. Since this rule mentions about connection
between subsystems, bus has no relation.

4.1.14. jc_0602: Consistency in model element names

ID: Title jc_0602: Consistency in model element names
Priority Strongly Recommended

Scope JMAAB

MATLAB ALL

Version

db_0042: Port block in Simulink models
Prerequisites |na_0005: Display of Inport and Outport block names
db_0123: Stateflow port names

Names (characters) for the following model elements directly connected to the same signal
should be consistent.

Inport block: block name (if the block name is displayed)
Description + Outport block: block name (if the block name is displayed)
+ Goto block: tag name (not the block name)
From block: tag name (not the block name)
Signal line: signal name (including legacy signal names)

© Copyright 2007JMAAB. All rights reserved. 42

Subsystem: masked port label names (if the port name is visible from above)
Label name when the port is displaying the label name
Inport, Outport prioritize rule na_0005.
However, for signals connected to the following subsystems, the connected boundaries are
regarded as an exception.
» Subsystems linked to a library
» Reusable subsystems

(1 ———sigh sigk

calo_| calc 2

Y

= iuh sigl b

1} - [zizi]

igh

siet) (D

zigh

- [zigh]

zigh

[=izB]

=igB

If a combination of Inport blocks, Outport blocks and other blocks has the same block
name, use a suffix or prefix for the Inport and Outport blocks.

Often used suffixes and prefixes are "in" for Inport blocks and "out” for Outport blocks. Any
prefix or suffix can be used for ports, but consistent prefixes must be selected.

See Also MISRA AC SLSF 036-C
Last Change V4.0

Notes

4.1.15. db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, enabled, conditional Subsystems
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites

Conditional input blocks should be located at the tope of the subsystem.
1.Conditional input blocks

® Enable

® For lterator

Description

© Copyright 2007JMAAB. All rights reserved. 43

Action Port

Switch Case Action

Trigger

While Iterator

Following blocks also should be uniformely located.

2.Blocks treated as nealy same as conditional input blocks.
® For Each
® For lterator

Correct:
@ {Er.;T.: - F +
TotslTg ! C:
@ <TransTg> Ll
Incorrect:
:1 <EngTg> *+
TotslTg ! C
@ =TransTg> -+

® This guideline intends to improve readability by unifying outer shape of subsystem
and internal location. Regarding For Each block, For Iterator block and While Iterator
block, locations should be unified. However, regarding While Iterator block, it should
be careful since it is difficult to fix the location.

® |tis necessary to clarify the positions, when the model information of jc_0603 is
described.

Last Change (V4.0

Notes

4.1.16. jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block
Priority Strongly Recommended

Scope JMAAB

MATLAB ALL

Version

Prerequisites

For conditional subsystems including conditional input blocks such as Trigger Port
blocks,

the effect of the signal that triggers the subsystem is recorded both in the source and the
destination.

Description At the source, names that indicate the effect are given to either of the following:
¢ Block name
e Subsystem's block name (Part)
¢ Signal name
At the destination, these names are added to either of the following:
¢ Block name of the conditional input block (Trigger, Enable Port)

© Copyright 2007JMAAB. All rights reserved. 44

Notes

See Also
Last Change

o Part of the subsystem name of the conditional subsystem

Correct: example of a matching block name at the source and block name of the
conditional input block at the destination.

LhlzE& - i

Task2ms

TaskZ2ms
4
I|1IIIIII% | o

Correct: example of a matching signal name and suffix for the connected subsystem.

()——{u™= s :
gear shiftC ‘
gear
Detect 5
Chanee ..___—.;m inputrev presserl —)
: hput rev presser
input_rey presser
fon_presser_shiftC
Exception:

¢ Inthe case of library blocks that encapsulate generic functionality or reusable
subsystems, generic names for the signal should be used.

The purpose of this rule is to improve readability while also considering the prevention of
connection errors where the automatic checker is checking for connection errors.

A simple name inheritance rule that can be generally interpreted should be established
for the purpose of automatic checks by the checker.

MISRA AC SLSF 026C
V4.0

4.1.17. jc_0603: Model description

ID: Title
Priority
Scope

MATLAB
Version

Description

jc_0603: Model description
Recommended
JMAAB

ALL

Define functional units where a model description will be added, and supply a model
description for each functional unit using annotations or Modellnfo blocks.

Use a common format for the model description in the entire model.

For instance, use explicitly understood fixed headings (e.g. "Requirements"”,
"Summary").

Example:

© Copyright 2007JMAAB. All rights reserved. 45

3 jc_0603
File Edit View Display Diagram Simulation Analysis Code Tools

Bl v » » <5 » ”%E»%L’/ » (® v » [C]

ego0s |

(©]
Requirements:

@& Increment processing is performed to an input signal.

Inl +

= B Outl

Constant

&

»
Ready 100%

Use the example above to determine the notation, placement and headings for the
description.

See Also MISRA AC SLSF 022
Last Change V4.0

Notes

4.1.18. jc_0604: Block shading

ID: Title jc_0604: Block shading
Priority Recommended

Scope JMAAB

MAT_LAB ALL

Version

Block shading should not be used to show that signal lines are not connected, except in
the following cases:

® Subsystems without an Output Port
® Subsystems with displayed signal name

Correct: Incorrect:

Description {>> b

Gain Froduct i Dt Gaint Froductt

Subsystem
> o Lo
Int - In? o
Switch Switch
i Duti

) -

Outl Tetminator Subsystem 2 u Terminatort

If the signal name is noted in the subsystem, it is explicit that it has an Output Port.

Notes As it will be immediately clear that it is not connected, it will not fall within the restrictions
of this rule.
See Also MISRA AC SLSF 024A

Last Change V4.0

© Copyright 2007JMAAB. All rights reserved. 46

4.2. Signals

4.2.1. na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites

Restrictions on use of busses and vectors

+ Mux and Demux blocks must only be used in generating and decomposing vectors.
Scalars and vectors must be used for Mux input.
BusCreator and BusSelector must only be used in generating and decomposing
busses.
To avoid the problem of mixing Mux and busses, connect busses to bus-supported
blocks.

Description

See Also MISRA AC SLSF 015A,B,C,016A,B,C,D,E
Last Change V4.0

4.2.2. na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals
Priority recommended

Scope NAMAAB

MATLAB All

Version

Prerequisites
A label must be displayed on a signal originating from the following blocks:

Inport block

From block (block icon exception applies — see Note below)

Subsystem block or Stateflow chart block (block icon exception applies)
Bus Selector block (the tool forces this to happen)

Demux block

Selector block

® o o o o o

[

Data Store Read block (block icon exception applies)
e Constant block (block icon exception applies)
Description

A label must be displayed on any signal connected to the following destination blocks
(directly or by way of a basic block that performs a non transformative operation):

Outport block

Goto block

Data Store Write block
Bus Creator block
Mux block

Subsystem block
Chart block

© Copyright 2013JMAAB. All rights reserved. 47

Note: Block icon exception (applicable only where called out above): If the signal label is
visible in the originating block icon display, the connected signal does not need not to have
the label displayed, unless the signal label is needed elsewhere due to a destination-based

rule.
Correct
InPark IAND _
Vailid Start
Crank
Incorrect
AND
M Readability M Verification and Validation
M Workflow M Code Generation

Rationale M Simulation

Last Change (V2.2

4.2.3. na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels
Priority Strongly Recommended

Scope NAMAAB

MAT_LAB All

Version

Prerequisites |na_0008: Display of labels on signals

If a label is present on a signal, the following rules define whether that label shall be created
there (entered directly on the signal) or propagated from its true source (inherited from
elsewhere in the model by using the ‘<’ character).
1. Any displayed signal label must be entered for signals that:
a. Originate from an Inport at the Root (top) Level of a model
b. Originate from a basic block that performs a transformative operation
(For the purpose of interpreting this rule only, the Bus Creator block, Mux
block, and Selector block shall be considered to be included among the
blocks that perform transformative operations.)
Description 2. Any displayed signal label must be propagated for signals that:
a. Originate from an Inport block in a nested subsystem
Exception: If the nested subsystem is a library subsystem, a label may be
entered on the signal coming from the Inport to accommodate reuse of the
library block.
b. Originate from a basic block that performs a non-transformative operation
c. Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the signal to
accommodate reuse of the library block.

© Copyright 2013JMAAB. All rights reserved. 48

Rationale

h 4

EngTq

TotalTq <Totallg> » @

StarterTq

@
0
i
i
5
¥

Mested Subsystem

Ready [100% I/ |ode4s

J

C <EngTg> L

EngTq

- <StarterTg> i

StarterTg

Totallg
TotalTg

Add

M Readability M Verification and Validation
M Workflow M Code Generation
M Simulation

Last Change (V2.0

4.2.4. jc_0008 : Definition of a Signal labels.

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0008 : Definition of a Signal labels.
recommended
JMAAB

ALL

Defines signal name to input port which is located at system top layer or signal lines which is
output from important block.

® Labels has to be displayed when signal name is defined.

® Signal name needs to be input only once (to the place where signal is occurred).

An important block is a block which outputs the result which is not decided by the kind of
block but is meaningful.

Correct:
Signal name is settled at necessary location, and is displayed.

Correct:
Signal name is settled at necessary location, and is displayed.

© Copyright 2013JMAAB. All rights reserved. 49

e R

s <s> X

—
:
Divide
<>

t

Incorrect:
Signal name is not settled.

. e G,
I—Vt \%
>,

See Also MISRA AC SLSF 027C,027D,027F,027G,0271,027J
Last Change V4.0

4.2.5. jc_0009 :Propagation of signal label

ID: Title jc_0009 : Propagation of signal label
Priority Recommended

Scope JMAAB

MAT!_AB ALL

Version

Prerequisites |jc_0008 : Definition of Signal labels

If the signal name is propagated (with signal name), turn propagation signal ON, and
display signal name.
When signal name is defined at different layer, signal name is displayed with
propagation signal ON.
However, in the following cases, without cross the hierarchy, propagation of the
signal display name is required
» Target block: Signal output from the basic block to perform a non-conversion
operation

from,goto

Bus Creator ,Bus Selector

Signal Specification

Function Call Split

Description

Propagation signal display examplel: Propagation display step over the hierarchy

© Copyright 2013JMAAB. All rights reserved. 50

)
%
»
<
A
El

I—P t \Y
@ t speed
—
CO= -
S
+ vV ’ ®V
1 Divide
=

Propagation signal display example2: Propagation display at same hierarchy

e —
v 4 Et1> I
y Out1 L

pain1ﬁ * ou <outl> &>

I peain Out2 Cy—|m out Out3

Y] in2 3 Ouzf—— (%)
pagin —’(<pagin2> E) <out2> Outa

Outd Triggered_Subsystem1

Triggered_Subsystem

Propagation signal display example2: Propagation display at same hierarchy

<t1>
Trigger Terminator
inherit >
T In1 pgain pgain>| —
" Gain Signal Speciicatio pam
[pgain] [pgain] i)
Goto From Gainl pagi

Exception to ON the display of the signal propagation
1. Subsystem inside that library and reusable function is set.
2. No signal name is set at Bus Creator outport.

In case there is a signal name at Bus Creator outport, propagation signal is ON for
this signal. However, in case there is no signal name on Bus Creator outport,
propagated signal is transmitted in a state in which all of the bus signal names was
degraded in the past MATLAB. It is also transmitted in empty in the latest MATLAB.
This case, propagation signal is not ON.

Correct
If there is signal name on Bus Creator outport, propagation should be ON.

© Copyright 2013JMAAB. All rights reserved. 51

~Butl 2021 fini Outl }

<a and b>
Atomic_Subsystem]
sample?
double
a
Constant
double aandb Outl
b
Constant 1
Correct

If there is no signal name on Bus Creator outport, propagation should be OFF.

——Butl 201 $ini Outl }

Atomic Subsystem
samplel

double
a

Constant
double Outl
b

Sonstant 1

Incorrect
In case no signal name is put on Bus. (R2010b)

Outt %’Im Outl p

<a, b>

Atomic Subsystem
sanplel
Constant

double Out1
b

double
a

Sonstant1

Last change (V4.0

hisl_0013: Guideline for using the Data Store block
MISRA AC SLSF 005C

Last change (V4.0

See also

4.2.6. na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models
Priority Strongly Recommended

Scope NAMAAB

MATLAB ALL

Version

© Copyright 2013JMAAB. All rights reserved. 52

Prerequisites

For the display of Inport and Outport block names, select either jc_0082 or jc_0083 and
apply uniformly.

However, understanding the benefits of each of the rules outlined below, they can also
both be used depending on the process or the layer and subsystem type. (It is important to
clearly define the rule for the separate usages)
For instance, they could be used based on rules like the following.
® When creating on the premise of RCP which extends the functionality of the model
at the beginning of the process.
» In the case of Atomic Subsystem + function, jc_0082
» Virtual Subsystems allow jc_0083
» Allow use of either for Atomic Subsystem +auto, inline.
® Implementation code stage
» Make all conform to jc_0082.
These are some examples of what is possible.

® Benefits of each rule
4 jc 0082
These rules are in order to avoid connection errors in layered subsystems.

Description When connecting subsystems after designing functions for individual subsystems
separately, this is effective in avoiding connection errors, by connecting signals and ports
so that their names match.

4 jc_0083

The purpose of this rule is to reduce man-hours.

The advantage of this rule becomes apparent when used for layering by building
subsystems through the selection of already existing specific blocks. In this case
connection errors do not occur as only a layer of existing blocks is dropped.

As the subsystem creation function has no function that automatically copies signal names
to block names, unification of block names and signal names requires man hours.
Moreover, as there is the option of changing signal names in the initial stage of the
process, the concern is that complying with jc_0082 will lead to errors because of an
increase in subsequent hours needed for correction and correction oversights.

Also, the subsystem creation function does not have a correction function for port icon
display or a function for automatically replacing block names with signal names.

Whether using jc_0082 or jc_0083, man-hours will be required for that.

For work that is done this frequently, an automatic correction function using an API should
be used.

The following 3 rules were highly related.

® na_0005: Port block name visibility in Simulink models

® jm_0010: Inport and Outport block names

® jc_0081: Display of Inport and Outport block icons

Furthermore, 2 techniques were described in na_0005. As it was difficult to know how
these technigues should be described, this rule imposes a choice of one of the two
techniques, as is indicated in the old na_0005. We have then extracted 2 separate new
rules, jc-0082 and jc-0083, to describe these 2 techniques separately. Rules jm_0010
and jc_0081 have been deleted as they have been combined with this rule and split
between jc_0082 and jc_0083.

See Also MISRA AC SLSF 036-C
Last Change |V4.0

Notes

4.2.7. jc_0082: Display of Inport and Outport block names 1

ID: Title jc_0082: Display of Inport and Outport block names 1
Priority Strongly Recommended

© Copyright 2013JMAAB. All rights reserved. 53

Scope MAAB

MATLAB

Version ALL

Prerequisites

Please set the port block name, the signal name and the icon nhame as a set.

If the Inport or the Outport block has a signal name,

® the name of the signal line connected to the Inport or the Outport should be the same
as the block name.

® The Inport or the Outport block name should be displayed.
("Format", "Block name not displayed" not possible).

® "Port number" should be selected to display the icon for the Inport or Outport block
name.

Signal names refer to both attaching a label name or the existence of a legacy name.

The rule above is the same for scalars, vectors and busses.

Exception:

® The rule does not need to be adhered to inside library subsystems, masked subsystems
or subsystems where reusable functions have been set.

® Block names do not have to conform completely to the signal name. Please register
any differences in numeric characters used for suffixes or prefixes as specific
characters. Often used suffixes and prefixes are _in for Inport blocks and _out for
Outport blocks. Any prefix or suffix can be used for ports, but consistent prefixes must
be selected.

Correct:
Selecting a port number

Yy

@D,
o EeFpm {EeRpm>
Description ad

CD) {Offset>

Offset

> |u »(1)
EeRpm_ abs
he EeRpm_abs

Appearance of the subsystem from above

(1 }Eng »|EcRpm
m EgRpm_sbs (1
Exfom R . O
m [—P e EeRpm_abs
Offest Offset Subsystem
[
Incorrect:

"Port number and signal name" is selected for the display of the port block icon.
1<{EeRpm>
(BRI s o | BT e Rom.ab)
(0D)] . e
2<0ffset> Ofests

YV

Incorrect:
The port block name and the signal name are different.

© Copyright 2013JMAAB. All rights reserved. 54

Notes

See Also
Last Change

@ <{EeRpm>

In1

D Add Abs
{Offset>

In2

Yyv
+
A\ 4
=
[V]

EeFpm_abs

Qutl

Incorrect:
The port block name is not displayed.

i >
o <EeRpm> A > ul (1)

1+ EeRpm_ abs

@D #dd Abs
{Offset>

To match it with the checking content of the current guideline checker

na_0005 - 1 has been formulated independently.

The purpose of this rule is to avoid connection errors in layered subsystems.

Function layers in controller models sometimes connect tens of signal lines, and it is
important to build a model where connection errors can be seen at one glance. It is
important, when building a safe system that is an automobile, that its design allows to
discover simple errors at a glance.

When this rule is applied, it is difficult to automatically judge whether all signal names or
block names are correct after they have been automatically replaced.

Signal names, even when they are legacy names, cannot be automatically judged as to
whether the block name may be replaced from the signal name or whether there are any
connection errors.

While extracting the differing parts of the names and confirming them one by one, a
decision needs to be taken on whether to employ the block name or the signal name. If
either is unilaterally changed, they can be made uniform with the automation tool.

MISRA AC SLSF 036-C
V4.0

4.2.8. jc_0083: Display of Inport and Outport block names 2

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0083: Display of Inport and Outport block names 2
recommended
NAMAAB

ALL

Please set the port block name, the signal name and the icon name as a set.
If the Inport or the Outport block has a signal name,
® the signal name should not be the same as the block name in the Inport or the
Outport block. The block name should conform to a number of specific fixed
block names.
For instance, in value and out value Inport standardly named in
Simulink
® |con display of Inport or Outport block should select "Signal name" or "Port
number and signal name".
® Block names for Inport or Outport blocks should be set to not displayed (when
changing the icon display settings described above, the default setting for block
name display changes to OFF, and the user does not need to perform any
specific operation).
Signal names refer to both attaching a label name or the existence of a legacy name.
The rule above is the same for scalars, vectors and busses.

© Copyright 2013JMAAB. All rights reserved. 55

Exception: Names cannot be set to non-display inside library subsystem blocks.
This is used when the signal name is prioritized and no meaningful name is attached to
the block name.

Correct: Use the port number and the signal name display for the icon label
The icon display for the Inport of the Outport block is selected as the signal name

T<EeRom

(=EeRom> s o | 2R e Rom ab)
Add Abs

(ZL0ffset)—

2<{0ffzet> Oftset>

Yy

Correct: The signal name display is used for the icon label

(<EeFpm>) >

LT s iy o juj | E€Fem.bs »(EeRpm_abs)
(CLOffset>c)—

{Offset> TOfiset>

Add Abs

Appearance of the subsystem from above

(3 } p|<EcRpm>
I EzFpm EeRpm_abs >@
,_><0ffset> <EeRpmabs> — 57H
na Offest Subsystem1

When the "signal name" is given for the icon display, the signal name for inherited signals
is given between < >, but no < > are used for signal names if a direct label has been
entered. Please note that, if entering a list of signals at a bus, extremely long names will
be displayed if no name is given to the bus.

Reference 1: No name given to bus

<EngTq, StartTql>

StrTal <{StartTq2>
artlq
Subsystem2
StartT
-—, SartTa?

Reference 2: Name given to bus

TotalTd <TotalTq>

! <Sig1>
§ Sigl TotalTo_- ({TotalTo)
SrTql <StartTq2>
Subsystem2
StartTq
(StartTa2) StarTa?

Incorrect:
If the signal line of the Inport or Outport block has a name, the icon display only has a port
number, and the block name is displayed.

© Copyright 2013JMAAB. All rights reserved. 56

Notes

Last Change

o

In1

Add Abs
D
{Offeet>

In2
Incorrect:
After using a port number and signal name display on the icon label, this has been
changed to block name display for the port block.

(<EeRpm> } +
i {EeRpm> i [u] EeRpm_abs »(EgRpm_abs)

vy
+
h 4

[u] »(1)
Eehiimsss QOut1

YV
y

Ini
ZOffeel> £ Abs
= Offsety

Manually changing the icon display takes time and effort. Automatic correction using a
Simulink API surely is desirable.

In that event, an API for automatically conforming the specifically defined port block name
to signal name should also be used.

V4.0

4.2.9. db_0097: Position of labels for signals and busses

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See Also
Last Change

db_0097: Position of labels for signals and busses
Strongly Recommended
MAAB

ALL

The labels must be visually associated with the corresponding signal, and not overlap other
labels, signals or blocks.

Labels should be located close to the corresponding source or destination block below the
signal line.

MISRA AC SLSF 027A
V2.0

4.2.10. db_0081: Unconnected signals, block inputs and block outputs

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0081: Unconnected signals, block inputs and block outputs
Mandatory
MAAB

ALL

A model must not include the following.

® Subsystems or basic blocks with unconnected inputs
® Subsystems or basic blocks with unconnected outputs
® Unconnected signal lines

If unconnected blocks/signal lines are required, they must conform to the following.
® Unconnected inputs should be connected to a ground block.

© Copyright 2013JMAAB. All rights reserved. 57

® Unconnected outputs should be connected to a terminator block.

Correct:

RPM_2_RadPerSec

RPM_2_RadPerSec

By using addterm(‘sys’) command, Terminator blocks and Ground blocks are added to the

terminal which is not connected to sys in Simulink block diagram.

By executing this operation, the model compliant to guidelines can be realized easily.
Notes However, distinguishment of intended block or the block which is forgotten to connect

becomes impossible. To enable identification of them after this operation, please add

annotations near those blocks or change give identifiable names to those blocks. Or please

change size of these blocks so that it is clear these blocks were intentionally added.

Last Change V2.0

4.3. Use of of Blocks

4.3.1. na_0003: Simple logical expressions for If condition blocks

ID: Title na_0003: Simple logical expressions for If condition blocks
Priority Mandatory

Scope MAAB

MAT_LAB ALL

Version

Prerequisites

A logical expression may be implemented within an If condition block instead of building it
up with logical operation blocks, if the expression contains two or fewer primary
expressions. A primary expression is defined as one of the following:

e Aninput

e A constant

e A constant parameter

o A parenthesized expression. Except for zero or 1 instances of: <, <=, >, >=, ~=, ==,

~, no operator is included. (See examples below)

Exception:
A logical expression may contain 3 or more primary expressions if both of the following are
true:

e The primary expression are all inputs

e Only one type of logical operator is present
Examples of acceptable exceptions:

e ul|u2|u3|ud|us

e ul&u2é&ul3é&u4d
Examples of primary expressions:

Description

o ul
e (U1>0)
e (Ul<=Q)

© Copyright 2013JMAAB. All rights reserved. 58

e (Ul>U2)

e (~ul
Examples of acceptable logical expressions:
e ulju2
e (ul>0)&(ul<?20)
e (Ul>0)&(u2<ul)
e (U1>0)&(~u2)

Examples of unacceptable logical expressions:
ul &u2|u3 Too many primary expressions.

Two kinds of operators exist.

ul & u2 | ud) Unacceptable operator within the primary
expression.

In parenthesized expression,only relational
operators can be used.

(ul>0)& (Ul <20)&U2>5) Too many primary expressions that are not
inputs.

Allowed number of primary expressions is two or
less.

(u1 >0) & ((2*u2) > 6) Unacceptable operator within the primary
expression
Multiplication is executed in parenthesized
expression.

In these cases, the primary expression must be computed and entered outside the If
Condition block.

Last Change (V2.2

4.3.2. na_0002: Appropriate implementation of fundamental logical and numerical
operations

na_0002: Appropriate implementation of fundamental logical and numerical

ID: Title .

operations
Priority Mandatory
Scope MAAB
MAT_LAB ALL
Version

Prerequisites

Operations must be performed using the appropriate blocks for logical and numerical
operations.

1. No numerical values may be input on blocks that are awaiting logical values.

2. No logical values may be input on blocks that are awaiting numerical values.

Detailed explanation
Description |® A logical output should not be directly connected to the inputs of blocks that process
numerical inputs.
® The result of a logical expression parameter should not be processed with a numerical
operator.
® This guideline for logical operations also applies to enumerated data types.

Correct:

© Copyright 2013JMAAB. All rights reserved. 59

bookan books
(———————————— ookan
It . —(D)
Outl

bookan -
J Logical
Operator 1

boolean -

00Ean
3 boolean
@ - Out2
Logical

L4 Operator
Incorrect:

bookan

1 > [
(In]), k unt8 boolean D
m bookan 2ad Outl
In2

Data Type Conversion

bookan

:
B3, Fodisan boolean
Ind Product pata Type Gonversion 1 G
® Blocks for performing logical operations may not be used for performing numerical
operations.
® A numerical output should not be connected to the inputs of blocks that process logical
inputs.
Incorrect:

ibiz b’ double
wubig p‘ double

® Blocks for performing numerical operations may not be used for performing logical
operations.

Incorrect:

Although Inputs other than logical values can be made, the Enable Port is a block that awaits

logical signals for which only On/Off exists.

Product blocks perform double and double operations, but as it connects the numerical

operations result to the block that awaits the logical value called Enable Port, the Product

block performs the logical operation.

a double I
daubla
[:::: double)

lanD | beckean

double

JIni Ot 1

® Boolean should not be applied relational operation.(Boolean signal should not be
compared with numerical value(0,1,~) or logical value(true, false))
® To invert boolean value, logical operation NOT should be used.

Correct: Boolean signal is inverted by using logical operation.

uint16

v

In1

boolean boolean ~ uint16
D =D
In2 Outl

Logical

@ uint16 Operator |—>

In3

|

Switch

Correct: Boolean signal is judged by using logical operation.

© Copyright 2013JMAAB. All rights reserved. 60

uint16

Int

T
boolean
2 AND| boolean uint16
boolean) @

Out1

true n
Logical

Operator » g F

Constant

Switch

uint16

In3

Correct: Equality of a numerical value and another numerical value is judged.
uint16

» a

In1
uint8 boolean ~ 0 uint16
D H =D
In2 Outl

Compare
To Constant —a

uint16

3 Switch

Signals which are not boolean can be compared with true, false.

Incorrect: Boolean signal is compared with numerical value.

uint 16
i
boolean -1 boolean | ~_ % |uint16 -

In2 |

¥

—

uirt 16
In3

“Relational Operator”, "Compare To Constant” and “Compare To Zero”are the blocks that
expect numerical input.

<= b

Relational
Operator
Compare Compare

To Constant To Zero

Although true, false tend to be considered as equal to numerical 0,1, they mean 0, other
than 0. Therefore relational operator should not be applied to boolean signal.

See Also
Last Change (V4.0

4.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers
Priority Mandatory

Scope MAAB

MATLAB ALL

Version

Prerequisites

® Controller models must be designed from discrete blocks.

The MathWorks "Simulink Block Data Type Support" table provides a list of blocks that
support code generation.

>The table will be displayed by entering the command showblockdatatypetable.

Description

© Copyright 2013JMAAB. All rights reserved. 61

Please use the blocks that are listed as "Code generation support" in your design. Even if
the blocks are subject to code generation support, do not use them for mass production
code in the following cases.

It is dependent to continuous time

It refers to non-finite values (Inf, -Inf, NaN)

It includes measuring code that is only suitable for rapid prototyping

® |n addition to the blocks defined by the rule above, please do not use the following
blocks.
Use of the following Sources blocks is prohibited.

Sources are not allowed:

Sine Wave %I:

Pulse Generator iy
Random Number I'N- -]
Uniform Random Number ﬂ b
Band-Limited White Noise]]‘nll" 4

® Sources blocks that are allowed
The Sources block group is formed by blocks that can all generate code, but the blocks that
can generate mass production code are limited to the following.

Constant

Enumerated Constant

Ground

Inport

® Use of the following additional blocks is prohibited.
The MAAB Style Guide does not recommend the use of the following blocks.
This list can be extended by individual companies.

Slider Gain 4 1 p
Manual Switch T
—
Complex to Magnitude-Angle ;,{LT:_
Magnitude-Angle to Complex 4 I! :,":;
S.e(uj b
Complex to Real-Imag Timcu) b
E H&-L
Real-Imag to Complex Jim"F

© Copyright 2013JMAAB. All rights reserved. 62

. Fiu)
Polynomial OP) = &
1 Interpreted

MATLAB Fen® MATLAB Fon

Goto Tag Visibility ot
=

Probe 0, Ts[0 0], €0, D:Of
[

InMR2011a, the block name "MATLAB Fcn" was renamed to the block name "Interpreted
Notes MATLAB Function”,

Last Change V2.2

4.3.4. hd_0001: Prohibited Simulink sinks

ID: Title hd_0001: Prohibited Simulink sinks
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites
Controller models must be designed from discrete blocks.
Use of the following Sink blocks is "prohibited".

To File M urtitled mat

Description
To Workspace ¥ simout

Stop Simulation

Simulink Scope blocks and Display blocks can be used in the model diagram. Please
Notes consider using Simulink Signal logging and Signal and Scope Manager for data logging and
reference requirements.

Last Change V2.2

4.3.5. na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites
Description |® Goto blocks must use local scope.

© Copyright 2013JMAAB. All rights reserved. 63

Notes

Last Change

.
"k Sink Block Parameters: Goto Lﬁ
Goto

Send signals to From blocks that have the specified tag. If tag visibility
is “scoped’, then a Goto Tag Visibility block must be used to define the
visibility of the tag. The block icon displays the selected tag name
local tags are enclosed in brackets, [, and scoped tag names are
enclosed in braces, {).

Parameters
Goto tag: A Tag visibility: |local S
Corresponding From blocks: refresh

na 0011/From

Setting tag visualization to global sometimes inhibits subsequent changes from virtual to
non-virtual subsystem. Not using them inside a controller model is therefore preferable.

Goto and From global tags can only be used outside the Atomic Subsystem. When Goto
and From are used globally, no Atomic Subsystem is present in the layers above. Case of
using From Goto global tag at outside of controller for the connection of controller and plant
model is not subject to this rule.

Same As jc_0161: Use of Data Store Read/Write/Memory blocks

V4.0

4.3.6. jc_0141: Use of the Switch block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0141: Use of the Switch block
Strongly Recommended
MAAB

ALL

The Switch block must be used under the following conditions
® The Switch condition, input 2, must be a Boolean type.
® The block parameter "Conditions for the passing through of the first input” should be

set to u2~=0.
Correct:
daubl
baal=an tauble
Int o0 daubla o = -I
Lol Outl
(= Jese
Switch
x|

Switch

Paszz through input 1 when input 2 satisfies the selected criterion; athenvize, pass
through input 3. The inputs are numbered top ta battom [or left ta right]. The input 1
pase-through criteria are input 2 greater than or egual, greater than, or not equal to
the threshold. The first and third input ports are data ports, and the second input port
iz the control port,

tdain I Signal Data Types

Criteria for pazzing first input: | u2 ~=10 j
Threshald: u2 »= Threshold
ID = Horestvotd

Incarrect:

© Copyright 2013JMAAB. All rights reserved. 64

double

Outl

Switch
+Thrashald=20%

b ain | Signal Data T}lpesl

Criteria for passingdirst input: |u2 »= Threshold b

Threzhold:
|20

Last Change V2.2

4.3.7.jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block
Priority Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisites

Use conditions of the Sum block

® A rectangular shape should be used.

® The size should be adjusted to ensure there is no input signal overlap.
® Use the + mark for the first input.

Correct: Incorrect:
1) 2)

Description o+

1) When using a round shape, the
input cannot use any angles other
than 90 degrees, 180 degrees, and
270 degree.

2) Since the mark has overlapped, it
cannot distinguish.

Correct: Incorrect:
C)— C>—F
= i e OB
In2 Subtract COut! In2 Subtract 4

The 1st input is using the mark of —.

© Copyright 2013JMAAB. All rights reserved. 65

This spoils readability.

Circular shapes can be used for feedback loops. The following 3 conditions must be
adhered to when this is used.

® Please keep the number of inputs up to 2-3.

® The inputs should be positioned at 90°, 180°, 270°.

® The output should be positioned at 0°.

Whether feedback loops are rectangular or circular, the - mark may be used for the
first input.

1 00°

180° -- --- 0° == Qutput

270°
Correct:
In2 Subfract2 Out2 InZ: >t

Gain Subtract1 Gain Out2

UnTt Delay

1
z

Unit Delay1

Out3

Ind Subtract1 Gaint Yorrs]

+
In4 Subtract Gaint

Other notation examples:

Correct 4- Correct —

Unit Delay4

Inl

[—— D)

In7

Gain7 Gain

.7 Correct

Unit Delay5

Correct

Out6

772 o
Correct \—IDe\ayiS

(D

Out4

Gain6

Delay1 Delay2

Incorrect:
When using a round shape, the input cannot use any angles other than 90 degrees, 180
degrees, and 270 degree.

See Also MISRA AC SLSF 010A
Last Change |V4.0

© Copyright 2013JMAAB. All rights reserved. 66

4.3.8. jc_0610: Operator order for Product block
ID: Title jc_0610: Operator order for Product block

Priority Recommended
Scope JMAAB
MAT_LAB ALL

Version

Prerequisites
If a block is set as a divisor, the first input should be multiplied (*).

Correct:
P
-
Froduct
Description
Incorrect:
-
P
Froduct
Notes As for jc_0121, it is assumed that the reason that there is no mention of a feedback group is

that there are no cases where the return destination is directly the Product block.
See Also MISRA AC SLSF 010B
Last Change (V4.0

4.3.9. jc_0611: Input signal sign during product block division

ID: Title jc_0611: Input signal sign during product block division
Priority Strongly Recommended

Scope JMAAB

MAT_LAB All

Version

Prerequisites

In the fixed-point model, if division is incorporated into the arithmetic expression, the sign is
the same as the input signal type.

Correct:

The input signal sign is the same.

Fisl
STl |afixds

=f ixlh

Incorrect:
The input signal sign is different.

Description

© Copyright 2013JMAAB. All rights reserved. 67

=f ixlh »

uf ix16

In division arithmetic, various utility functions are created when a fixed-point code is
generated. While a utility function is created for each LSB, the problem of LSB precision may

Notes make it difficult to suppress the number. In addition, if the type is different, the number can
easily double in size. Unification of types used can be expected to suppress the number of
utility functions, to improve ROM efficiency, and to cut down on testing manhours.

Last Change V4.0

H

=f ix16

+|+

See Also

4.3.10. jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block
Priority Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites

If using the relational operator for comparison of signals and constants, set the constant
input to the second (bottom) input.

Correct Incorrect
. 10
Description Af -
<= <=
EE EE
"
Bf
Relational Relational
Operatar COperator

Last Change (V2.0

4.3.11. jc_0161: Use of Data Store Read/Write/Memory blocks

ID: Title jc_0161: Use of Data Store Read/Write/Memory blocks
Priority Strongly Recommended

Scope JMAAB

MATLAB Al

Version

® The use case of data Store Read/Write/Memory is determined.
When using it as a memory which memorizes the past value, you should use
UnitDelay , Delay block, etc.
If UnitDelay is used, when readability will fall, Data Store Read/Write/Memory can be
used.

Description Please determine the case used in a project and use the use part of Data Store

Read/Write/Memory, limiting.

® Arrangement of Data Store Read Memory
To explicitly show the Read and Write scope, position the DSM block in as low a layer
as possible.
Do not position the DSM in the top layer for no reason

© Copyright 2013JMAAB. All rights reserved. 68

® diagnosis
If using between subsystems running at different rates, set diagnosis, data validity,
and multitask store as errors for use.

& Cor jc_0161/Configuration (Active) - —_—
Select | Data Validity <
Solver Signals
Data Import/Export
Optimization Signal resolution: [Explicit anly | Detect overflow [warning -]
4 Diagnostics,
Sample Time Division by singular matrix: [none v | Inf or Nal block output: [none -]
Type Conversion Underspecified data types: [none] “rt” prefix for identifiers: [error B
Connectivity [Data valiity
Compatibil 212 VRIGY ey s ition reres checkine: (oot Bl
Model Referencing
ek
| i . Parameters
Hecthesre Mrlesesfatiof Detect downcast: [orrar <) Detect overflow: [zrror -]
Siletlon Terset Detect underflow: [none] Detect precision loss: (warning)
Detect loss of tunability: (warning)
Data Store Memory Block 1=
Detect read before write: (Use local settings Al Multitask data store: [error ~| I
Detect write after read: [Use local settings ~ | Duplicate data stare names: [none B3]
Detect write after write: (Use local settings]
Object block
A
Data Store AP Data Store A Data Store
Read Diata Shore Write Data Store Memory Data Store
Read ‘Mite Mermoey

Know-how for improving readability

If Read and Write are positioned in differing subsystems, and the subsystems are not

directly wired, using a Ground and Terminator to create a dummy line that directly wires

the subsystems can enable visualization of the relationship from a higher level, improving

readability.

Priority order descriptions are necessary for these subsystems(and blocks). Dummy

connection does not bind the turn order. Dummy connection should be drawn based on its
Notes priority.

[Example of writing method]
A
Data Store
Memory
n
Trigger Ie
Constant
In _Sv:itch Data Store Ground Terminator A
Write Data Store
— Writel
Data St H Data St
Readl Turn is early. “Rea " Turn is late
Subsystem Subsystem1

hisl_0013: Guideline for using the Data Store block
MISRA AC SLSF 005C

Last Change (V4.0

See Also

4.3.12. Guideline for using the Logical Operator block

ID: Title jc_0621: Guideline for using the Logical Operator block
Priority Strongly Recommended

© Copyright 2013JMAAB. All rights reserved. 69

Scope JMAAB

MATLAB

Version All

Prerequisites

Unify the Logical Operator block icon shape to either "square" or "characteristics".
Unless there is otherwise a particular reason, set to "square”.

Icon shape: Square

Description ' '

Icon shape: Characteristics

DEVEI RV R

Last Change (V4.0

4.3.13. jc_0011: Optimization parameters for Boolean data types

ID: Title jc_0011: Optimization parameters for Boolean data types
Priority Strongly Recommended

Scope MAAB

MATLAB All

Version

na_0002: Appropriate implementation of fundamental logical and numerical

Prerequisites .
q operations

The optimization parameter for Boolean signals must be enabled. In the Configuration
Parameter Dialog Box, select Use Logic Signal as Boolean Data (vs double) under
Simulation and Code Generation of Optimization.

Description Select: | Simulation and code generation

Solver

Data Import/Export
4 Optimization ‘
Signals and Parameters
Stateflow

[¥] Block reduction
[¥] Implement logic signals as Boolean data (vs. double) |

i || Use integer division to handle net slopes that are reci

Last Change V2.2

4.3.14. jc_0629: Fcn block use limits

ID: Title jc_0629: Fcn block use limits
Priority Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites

The Fcn block is not used in the Controller Model for the purpose of code generation.
If using the Fcn block, use the MathOperation block within the subsystem, and build an
expression.

Example

Description

© Copyright 2013JMAAB. All rights reserved. 70

Notes

See Also

Update
History

= (10 %0} J 30} - 20 Y ——

/ Fem_Caleulation “_————-—-_______“__‘_‘__

Constant
Constant |

24 Mask Editor : Fon_Subsysterm o 50

Icon & Ports

Options

|| Block frame

j==

Tcon transparency
Transparent

4‘ |4
2|3
o | ©
3|

Autoscale

Icon rotation
Fixed -
Port rotation

Default

Examples of drawing commands

Command port_label (label specific ports) -
wh
‘ Syntax port_label(‘'output’, 1, 'xy)

1[Unmask] Preview] [VH Cancel Help Apply]

If using an Fcn block, it is advantageous in terms of readability because the numerical
expression is displayed from the top.

If a subsystem consisting of numerical expressions only has been designed, implementing

subsystem masking, and displaying the numerical expression within the disp command,
makes it appear equivalent to Fcn, and improves readability from the upper layer.

MISRA AC SLSF 005B

V4.0

4.3.15. jc_0622: Guideline for using the Fcn block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See Also
Last Change

jc_0622: Guideline for using the Fcn block
Strongly Recommended
JMAAB

All

If using the Fcn block, always enclose in parentheses in arithmetic with priority order.
(Rather than blindly rely on the priority order, use parentheses for clarification.)
Correct:

Since there is a priority order in the Fcn block operation, parentheses are attached.

—» ({10 % u) f30) - 20 —n

Fen
Incorrect:
Even though there is a priority order in the Fcn block operation, parentheses are not
attached.

— 100 /30 - 20 —

Fen

V4.0

© Copyright 2013JMAAB. All rights reserved. 71

4.3.16. jc_0626: Guideline for using the Lookup Table system block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0626: Guideline for using the Lookup Table system block
Strongly Recommended
JMAAB

All

For the lookup manual option in the Lookup Table, Lookup Table 2D, Lookup Table nD, and
Lookup Table Dynamic, use "Interpolation - Use Final Value". (R2011a)

However, exclude cases when all input and output are a real number (double, single).

This rule is not merely for the purpose of preventing overflow of the Lookup Table output (if
that is the purpose, use the saturation at integer overflow in the Lookup Table block), it is
for the purpose of clearly defining the Lookup Table maximum and minimum values to
prevent unexpected results in other operation blocks using the Lookup Table output.

B Lookup Table block up to R2011a

.
f_gl Function Block Parameters: Lookup Table &J

Lookup

Perform 1-D linear interpolation of input values using the specified table.
Extrapolation is performed outside the table boundaries.

Main | Signal Attributes |

Vector of input values: [-55] ‘

Table data: tanh([-55])

Lookup method: [hte(polatipn-Use End Values v
Interpolation—-Extrapolation
Sample time (-1 e
Use Input Nearest
Use Input Below
|Use Input Above

[OK][Cancel 1[Help][Spply]

|

B Lookup Table R2011b and later (same as n-d Lookup Table)

Interpolation method: Prohibit 3D spline, and use linear shape.

Extrapolation method: Prohibit linear shape and 3D spline, and use clip.

Extrapolation option: Check "Use the final break point, or the final table value for input
based on it".

© Copyright 2013JMAAB. All rights reserved. 72

=
" Function Block Parameters: 1-D Lookup Table ' U
Lookup Table (n-D)

Perform n—dimensional interpolated table lookup including index searches. The table is a sampled representation of a
function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to
the top (or left) input port.

Table and Breakpoints Algorithm Data Types

Tt

Interpolation method: Linear v
Extrapolation method: [¥] Use last table value for inputs at or above last breakpoint

Diagnostic for out—of-range input: [7] Remove protection against out-of-range input in generated code

Index search

Ihdex search method: [7] Begin index search using previous index result

Input settings '

[7] Use one input port for all input data

Code generation

[] Support tunable table size in code generation

[OK][Cancel][Help H Apply

See Also

Notes

The options shown below usable in versions R2011a or earlier do not have upward
compatibility with versions R2011b or later. As a result, in these Guidelines it is limited to
"Interpolation - Use Final Value".

Option name with no upward compatibility

+ Use nearest input

+ Use bottom input value

- Use top input value

Last Change

V4.0

4.3.17. jc_0627: Guideline for using the Discrete-Time Integrator block

ID: Title |jc_0627: Guideline for using the Discrete-Time Integrator block
Priority |Recommended

Scope JMAAB

MAT_LAB Al

Version

Prerequisites

Description

For the Discrete-Time Integrator, set the saturation upper limit and lower limit.

7~
Limit output \
Upper saturation limit:
PLM_MAX

Lower saturation limit:

.‘F'LM_MIN)

[7] Show saturation port
[7] Show state port

[7] Iznore limit and reset when linearizing

‘) -7 H Cancel]E Help i | Appl

If performing settings for generation of mpt.Parameter and other codes in the parameters,

© Copyright 2013JMAAB. All rights reserved. 73

the data type should be set to auto.

See Also
Last Change V4.0

4.3.18. jc_0628: Guideline for using the Saturation Block

ID: Title jc_0628: Guideline for using the Saturation block
Priority Recommended

Scope JMAAB

MAT.LAB All

Version

Prerequisites

For the maximum value and minimum value of Saturation or Dynamic Saturation blocks,
use should be limited to to significant values within the maximum and minimum range.

If setting the type maximum and minimum for both the Saturation or Dynamic Saturation
blocks, use the "Saturation at Integer Overflow" in the Data Type Conversion block.

(For details, see jc_0651)

Correct:
A significant value should be used for the Saturation limit value.
sfx32_En12
®—‘In : BIDEAIE 639990234375
Esﬁxazmz J¥]ufix16_£n1n (T
s Prodi l—] Qutl
stic16_En10 roduct Saturation
= EBE = 10; FRR=10
Constant
5 i sfix32_En12
.sfu32_En12
Gondtanti Product 1 Out2

In regards to the type maximum value 63.9990234375, the Saturation upper limit value is
set to a value 10 differing from the type maximum value.
|y [EEEE
B
10
Description ||l|| s
0

3 SRR -1 e AT T

Correct:
If limiting the type maximum and minimum values, use the Data Type Conversion block.

unt32

Inl \—bu'nm

X
nta2
aran [0 frouet X Junta2 _ Lint 16
552 uint16 @
Constant -

5 Outl
Divide Data Type Conversion

uint32 SaturateOnlntegerOverflow=on

Gonstant 1

Qutput data type: uint16

I

|| Lock output data type setting against chani

Ihput and output to have equal: |Real World Vz
Integer rounding mode: |Floor

[¥] Saturate on integer overflow

Sample time (-1 for inherited):

© Copyright 2013JMAAB. All rights reserved. 74

Incorrect:
In the Saturation Block, upper and lower limit processing is performed within the type
maximum and minimum ranges after downcasting.

unt32

Inl L>u‘m32
nt32 | Frodust
342 e .u'nt32 u'nns

Constant

)

Divide Saturation ol

m unt32 UpperL imit=nt max{unt 167
LowerLimit=intmn{ unt 16"
Constant 1
The type maximum value is set in Saturation.
Main | Signal Attributes |
Upper limit:
intmax('uint 167

‘ ‘ Lower limit:

intmin{’uint167)

See Also MISRA SLSF0002A
Last Change V4.0

4.3.19. jc_0650: Block input/output data type with switching function

ID: Title jc_0650: Block input/output data type with switching function
Priority Strongly Recommended

Scope JMAAB

MAT_LAB All

Version

Prerequisites

For blocks (Switch, Multiport Switch, Index Vector) with switching functions, use the same
data type for data ports and output port.

Correct:
int 16
boolean » ;Z_ int16 »

wintg [. |intis Switchi

Data Twpe Conversion

Description
uintd ol
intih 1
P Lintis |
int1§ » E_D
uintE. —_ int1h " %IF’DS
Data Twpe Conversiond Mult iport
Switch?

© Copyright 2013JMAAB. All rights reserved. 75

Notes

See Also

Incorrect:
int16

boolean » ;:‘__ int16 »

Mswitcm

uintd ol
int 16 1

P Lintis |
int16 .E_D
. 3
uintd oo

Multiport

Switchi

Signal flow switching port is described as control port, other input ports are described as
data ports.

Control port ——pH

 E—
—’.;\-

Data
ports

Last Change V4.0

4.3.20. jc_0630: Number of data ports in Multiport Switch block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0630: Number of data ports in Multiport Switch block

Mandatory
JMAAB

All

Set the "data port number" in the "Multiport Switch" block" to two or more.

Correct:

Multiport
Switchl

© Copyright 2013JMAAB. All rights reserved. 76

& Function Block Parameters: Multiport Switch g

Multi-Port Switch

Pass through the input signals corresponding to the truncated value of the
first input. The inputs are numbered top to bottom (or left to right). The
first input port is the control port. The other input ports are data ports.

Main | Signal Attributes

Data port order: [Zero-based contiguous v
Mumber of data ports:
2
Data port for default case: [Last data port v]
Diagnostic for default case: [None ']
Incorrect:
_|
=3
>ﬂ_/
Multiport
Switch
") Function Block Parameters: Index Vector E
::h b S—

Multi-Port Switch

Pass through the input signals corresponding to the truncated value of the
first input. The inputs are numbered top to bottom (or left to right). The
first input port is the control port. The other input ports are data ports.

Main | Signal Attributes

Data port order: [Zero-based contiguous

Mumber of data ports:

-

b
Sample time (-1 for inherited):

-1

Correct:
If extracting index elements from the array, use the Selector block.

double (3)
1.2.3 > L
et | e E—
m=——— _p [dx1
Constant3 5 Bl
Sekctor BELY
1 double
_J Index
Constanth

© Copyright 2013JMAAB. All rights reserved. 77

£ Y
"4 Function Block Parameters: Selector l&

Selector

Select or reorder specified elements of a multidimensional input signal.
The index to each element is identified from an input port or this
dialog. You can choose the indexing method for each dimension by
using the “Index Option” parameter.

Parameters

MNumber of input dimensions: 1

Ihdex mode: [Zero—based B4
Index Option Index Qutput Size
1 [Index vector (port) ¥] from port = Inherit fro=

Ihput port size: 3

Sample time (-1 for inherited): -1

[OK J [Cancel H Help Apply

See Also MISRA AC SLSF 013A

Only the Index Vector and Multiport Switch option settings differ, and both are blocks that
have the same functions. If there have been multiple inputs of the vector signal, output the
vector in accordance with the index number. If the number of data ports is one, it will
change to a block that extracts scalar from inside the vector. If, without knowing this, the
input pattern of the index portion has been reduced to just one, the block should in fact be
cut back. However, if the block role has not been recognized, there is a possibility that
reducing the port number will be acceptable. In this case, the intended action will not occur.
To confirm whether the design intentions were intentionally prepared or unintentionally
used, use the Selector block in the block that extracts any single desired element from the
vector.

In addition, if extracting a specific fixed scalar from the vector, it should be considered that
there is a possibility that a path should be used rather than a vector.

ouble double
Notes Constants ~ [dex Constant2"98% 1
PR N R

double (3

[120] [Euble@,]0 T2 ke ® o >

T Display1 2 double (3)
Constant3 > 3

Wect
‘ector 224 double (3) |1 T
" -
14551 double (3) |.,. 2 Display
Constantb Thdex

Wectorl

Last Change (V4.0

© Copyright 2013JMAAB. All rights reserved. 78

4.3.21. jc_0631: Input of Multiport Switch block to control port

ID: Title jc_0631: Input of Multiport Switch block to control port
Priority Strongly Recommended

Scope JMAAB

MAT.LAB All

Version

Prerequisites
Set the input to the "Multiport Switch" block control port to an unsigned integer.

Usable data type
e uint8, uint16, uint32

e Enumerated data type (does not literally use negative values)

Control port »[
Description
—>
4’___'
Data
R
ports .
. e
5 — -
- Multipert
Switch
Control port — g7
—>
4’___'
Notes Data N
ports .
. e
5 — -
- Multipert
Switch
See Also hisl_0022: Selection of index signal data type

MISRA AC SLSF 013B
Last Change (V4.0

4.3.22. jc_0632: Default case port in Multiport Switch block

ID: Title jc_0632: Default case port in Multiport Switch block
Priority Recommended

Scope JMAAB

MAT_LAB All

Version

Prerequisites

If the order of the Multiport Switch block data ports is "index specified”, the following
settings should be performed:
Description ® Set the default case data ports to "additional data port"
® Set the default case diagnosis to "none"

© Copyright 2013JMAAB. All rights reserved. 79

-
"4 Function Block Parameters: Multiport Switch

Multi-Port Switch

Main | Signal Attributes |

Pass through the input signals corresponding to the truncated value of the
first input. The inputs are numbered top to bottom {or left to right). The
first input port is the control port. The other input ports are data ports.

Data port order: [Specify indices

Data port indices (e.g. {1,[2,3]1:

f1.3l

Data port for default case: [Additional data port v]

Diagnostic for default case: [None

Sample time (-1 for inherited):

-1

9 oK

J[Cancel][Help ‘ Apply

ole
;]
ible . 1
double
ible . 3
1ble NE>S
Multiport
Switch
See Also |his|_0022: Selection of index signal data type

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved.

80

4.4. Initialization

4.4.1. jc_0625: Unification of descriptions of external input values as initial values

ID: Title |jc_0625: Unification of descriptions of external input values as initial values
Priority 'Recommended

Scope JMAAB

MATLAB R2011b and later

Version

Prerequisites |

Description

For the Unit Delay, which sets external input values as the initial values, unify to any of the
following:

1. Discrete/Delay (Recommended)
2. Additional Math& Discrete/Additional Discrete block group (Unit Delay External IC,

etc.)
3. Own configured library
Example
1. Delay Block usage example

Enable
double 5 iouble
o [::X”Z_] - Jut2
u
Delay 1

Function: delay.
Initial value: The first time value of Enable On.

|:u -1 doub

double z »(1D)
Cr——x0 Gutl

In2 Delay
Function: Keep the first time value of Enable On.

Delay input by a fixed or variable number of samples. Based on an external signal,
the block can reset its state to the specified initial condition (from dialog or input
| port). The block supports both circular and array buffer for state storage.

Main State Attributes

Data

Source Value Upper Limit

Delay length: 1
Thitial condition: |Ihput por: v

Alzgorithm
External reset: [Ncme v]
Input processing: [Elements as channels (sample based) v]

[7] Use circular buffer for state

Sample time (-1 for inherited): -1

7 [ok |[cancel |[Hep Apply

e

© Copyright 2013JMAAB. All rights reserved. 81

2. Unit Delay External IC

(}—}U
1

19 y
IC
Untt Delay
External IC

Excluding the Unit Delay External IC mask, the modeling is the same as the 3rd case
below.

3. Own configured library

double

)(¢]
IC1
boolean boolean m double
. .z ;5—)

I Outb
Constant Unit Delay Switch

double

Unit Delay1

See Also
Last Change V4.0

4.4.2. jc_0640: Detection of undefined initial output

ID: Title jc_0640: Detection of undefined initial output
Priority Recommended

Scope JMAAB

MATLAB Al

Version

Prerequisites

To prevent omission of the initial value setting when system configuration enabling initialized
parameters is performed, enable "Specification Shortage Initialization Detection".

Select <diagnosis><data validity><specification shortage initialization detection><classic>.
And <Check undefined subsystem initial output> flag is "On"

Description

© Copyright 2013JMAAB. All rights reserved. 82

Select: Data Validity B
Solver Sigrals
Data Import/Export
Optimization Signal resolution [Explicit only Detect overflow [warnine -]

4 Disgnostics

Sample Time Division by sinular matrix: [none ~] Inf or Nal block output: [none -]
Data slidit]

Type Conversion Underspecified data types: [none “rt” prefix for identifiers: [error -]
Connectivity
Gompatibility Simulation range checking: [nane
lode! Referencing
Saving Praan
Stateflow it
Hardware Implementation Detect downcast: [error | Detect averflow: [error -]
Modz! Referencing
b Simulstion Tarest Detect underflow: [none.] Detect precision loss: [warning -]
ode Generation
| Detect loss of tunability: [warning v

n

Data Store Memory Block

Detect read before write: Use local settings ~ | Multitask data store: [error]
Detect write after read: [Use local settings ~ | Duplicate data store names: [none -]
Detect write after write: (Use local settines)
I
Merge Block
Detect multiple driving blocks executing at the same time step: [none] '
Model Initialization
Underspecified initialization detection: Classic -]

[V] Check undefined subsystem initial output

["] Check runtime output of execution context

Debugging

Array bounds exceeded none SHllE

Q i} ok |[Cancel |[Heb][Aol

While normally the initial value is not valid, if the conditions are met, it is the Outport block
and Merge block that change to blocks that have the initial value.
Notes When | meet the following conditions, there is not the need to use this rule.
- The output signal line of the Merge block has the setting of the Simulink object.
Because an initial value is set to a signal, so initial value is explicit.

See Also MISRA AC SLSF 007
Last Change V4.0

4.5. Block Parameters

4.5.1. db_0112: Indexing
ID: Title db_0112: Indexing

Priority Strongly Recommended
Scope MAAB
MATLAB

Version Al

Prerequisites

Use a consistent vector indexing method for all blocks.
Description When possible, use zero-based indexing to improve code efficiency.

If mixing the one-based and zero-based indexing, establish the operations rules, and
Notes enable understanding of which index is being used.

cgsl_0101: Zero-based indexing
hisl_0021: Consistent vector indexing

Last Change (V2.2

See Also

4.5.2. db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks
Priority Strongly Recommended

© Copyright 2013JMAAB. All rights reserved. 83

Scope MAAB

MATLAB
Version

Prerequisites

To ensure that a parameter is tunable, it must be entered in a block dialog field as follows:
® Without any expression.

® Without a data type conversion.

® Without selection of rows or columns.

Correct:
Description | tunable_parameter_value F | tunable_parameter_vector F | tunahle_parameter_array |>
Incorrect:
| tunable_parameter_value*2 |> | tunable_parameter_vectart3 |> | tunable_parameter_array*3 |>
| int1 Gtunable_parameter_value) F | tunable_parameter_vector(2) F | tunable_pararmeter_array(1,1) F

Last Change (V2.2

4.5.3. jc_0645: Named constant setting

ID: Title jc_0645: Named constant setting
Priority Recommended

Scope JMAAB

MAT_LAB All

Version

Prerequisites
Block parameters that are targets of calibration should be defined as named constants.
Examples of parameters outside of calibration target:

e Iniitial value parameter 0
e Increment, decrement 1

e Gain block 1
Correct:
Description I ——

In1 e D

Incorrect:
I —

See Also MISRA AC SLSF 006B
Last Change (V4.0

© Copyright 2013JMAAB. All rights reserved. 84

4.5.4. jc_0641: Sample time setting

ID: Title jc_0641: Sample time setting
Priority Mandatory

Scope JMAAB

MAT.LAB Al

Version

Prerequisites

All blocks with settings related to sample time in the parameters must be set so as to
succeed to the input side settings.

However, the blocks below are not targeted:

Port block

Atomic Subsystem

Blocks with status variables such as Unit Delay blocks and Memory blocks
Signal conversion blocks such as DataType Conversion and Rate Transition
Blocks that do not have external inputs such as Constant blocks

See Also MISRA AC SLSF 009D
Last Change V4.0

Description

VVYVYVYVYV

4.5.5. jc_0642: Integer rounding mode setting

ID: Title jc_0642: Integer rounding mode setting
Priority Recommended

Scope JMAAB

MAT.LAB All

Version

Prerequisites

If "simple" is selected in Integer Rounding Mode, since it is dependent on the configuration
hardware setting, it should be set together with the configuration

5 Functon Bock perameters: Provoc S e

Product

Multiply or divide inputs. Choose element-wise or matrix product and
specify one of the following:

a) * or / for each input port. For example, **/* performs the operation
‘ul*u2/us*ud’.

b} scalar specifies the number of input ports to be multiplied.

If there is only one input port and the Multiplication parameter is set to
Element-wise(*), a single * or / collapses the input signal using the
specified operation. However, if the Multiplication parameter is set to
Matrix(*), a single * causes the block to output the matrix unchanged, and a
| sinzle / causes the block to output the matrix inverse.

Description HJBT] Signal Attributes

[

[7] Require all inputs to have the same data type

Qutput minimum: Output maximum:

i 0

Qutput data type: fixdt(1,16,3) v

|[™] Lock output data type setting azainst chanzes by the fixed-point tools

Intezer rounding mode: [Simplest V}

|| Saturate on integer overflow

\) [OK ” Cancel H Help Apply

© Copyright 2013JMAAB. All rights reserved. 85

Set <the division rounding of configuration><hardware execution><signed integer>.

@ Configuration Parameters: jc_0642/Configuration (Active)

Production hardware

Select:

Solver .

Data Import/Export Device vendor:

Optimization

> Diagnostics Nurmber of bits

Hardware Implementation

Model Referencing char: 8 short

Simulation Target

Code Generation long: 32 long long:
double: 64 native:

Byte ordering
Shift right

Enable long long

Tack havdusra

Incorrect

Device type: Unspecified (assume 32-bit Generic) |
Largest atomic size
1 nt g2 integer: [Char -]
64 float: 32
. = floating-point: (Nane]
32 pointer: |32
- | Siered integer division rounds to: [Zerg -
Zero
|Undefined

i

<the division rounding of configuration><hardware execution><signed integer> is set

“Undefined”.

Select:
Solver

Device vendor:

Data Import/Export
Optimization
4 Diagnostics

Sarmple Time
Data Validity char:
Type Conwersion
Connectivity long: 32
Compatibility
Model Referencing
Saving
Stateflow

MNumber of bits
short
long long:

double: |64 native:

Hardware Implementation
Model Referencing
Simulation Target

Byte orderine

Shift rizht on a sizned intezer a:

Device type [32-bit Embedded Processor]
Largest atomic size
16 nt 2 intezer: [Char -
64 float: 32
) — floating-point: (None)
32 pointer: 32
Unspecified ~ || Sieried intezer division rounds to: [Undefined -~

s arithmetic shift

If "Division Rounding of Signed Integer" option is set to "Simplest",
automatically selects either "Rounding in Negative Infinite Direction" or "0",
and generates the most efficient code.

Effects of <the division rounding of configuration><hardware execution><signed integer>

option.

"No setting" or “Undefined” (Depends on versions)

Select when the compiler action cannot be expressed in either "Zero" or "Rounding in

If the quotient is between two integers, the compiler selects an integer that is closer to 0 for

If the quotient is between two integers, the compiler selects an integer that is closer to

Notes . - . . o
Negative Infinite Direction”, or when the action is unknown.
"Zero"
the result.
"Rounding in Negative Infinite Direction"
negative infinity for the result.
See Also

Last Change V4.0

4.5.6. jc_0643: Fixed-point setting

ID: Title jc_0643: Fixed-point setting

Priority Strongly Recommended
Scope JMAAB

MAT_LAB All

Version

Prerequisites

If the fixed-point setting is used for the data type, and "slope and bias" is selected for

Description |scaling, the bias must be set to 0

© Copyright 2013JMAAB. All rights reserved.

86

F - SS—S— ——

i:'roduct

Multiply or divide inputs. Choose element-wise or matrix product and specify one of the following:

a) * or / for each input port. For example, ¥*/* performs the operation ‘u1*u2/u3*ud’.

b) scalar specifies the number of input ports to be multiplied.

If there is only one input port and the Multiplication parameter is set to Element-wisel *), a single * or /
collapses the input signal using the specified operation. However, if the Multiplication parameter is set to
Matrix(*), a single * causes the block to output the matrix unchanzed, and a single / causes the block to
output the matrix inverse.

| - Signal Attributes

[7] Require all inputs to have the same data type

Output minimum: Output maximum:

1] 1]

Qutput data type: fixdt(0,32,1e-3,0) v
l Data Type Assistant

Mode: Signedness: Word length: éQ

| Scaling: Slope and bias v | Slope: 1e-3
| Bias: E)
Data type override: [Inherit v [Galculate Best-Precision Scaling

Eixed-point details

[7] Lock output data type setting azainst changes by the fixed—-point tools

Ihtezer rounding mode: [Simplest ']

[7] Saturate on integer overflow

Q’ [OK][Cancel H Help l Apply

o — =

>

m

See Also

Last Change

V4.0

4.5.7. jc_0644: Guideline for type setting

ID: Title |jc_0644: Guideline for type setting
Priority 'Recommended

Scope |JMAAB

MATLAB Al

Version

Prerequisites

Description

If the type is set by data object, the type is not set on the block side.
However, this excludes the following:

- Reusable internal part of function

- Data Type Conversion block

- Type setting by fixdt

- Double type, boolean type designation

© Copyright 2013JMAAB. All rights reserved. 87

D s
P
s £0ut1 outl
:ln? €In2
Add
*& Function Block Parameters: Add &
S ‘ r"g Signal Properties: Outl @‘

Add or subtract inputs. Specify one of the following

a) string containing + or - for each input port, | for spacer between ports
(eg. ++-|+4)

b) scaler, >= 1, specifies the number of input parts to be summed.

When there is only one input port, add or subtract elements over all

TRy o o spaciiid inanslon ¥! Signal name must resolve to Simulink signal cbject

pagated signals

Main | Signal Attributes | 2 P - 5
g < | Logging and accessibility | Code Generation | Documentation
Require all inputs to have the same data type

Accumulator data type: Inherit: Inherit via internalrule v [>> | Log signal data Test point

Output minimum: Output maximum: Logging name

Output data type: Inherit: Inherit via back propagation I »

Set the signal name in the signal line on the model block side, and associate it with the
signal object.
*Inport block...Data type "auto”
»Outport block...Data type "auto”
*Sum block...Output data type "Inherit via back propagation”
The type setting is performed in the data dictionary, while the storage class setting is
optional.

Exceptional items

. Inside of reusable function

Even if all block structures are identical, difference of input/output data type leads to

different C source codes and it’ s not reuseable. Regarding reusable functions, data types
Notes of input/output blocks should be fixed.

. Data Type Conversion block

Purpose of Data Type Conversion is to set data type. If needed, data type is explicitly set by

using this block.

. Data types set by using fixdt

If fixed point is selected, detailed setting is necessary since each block can have different

data points. Complete control of data type by using only data object is impossible.

e double type, boolean type

Some block type needs explicit setting to boolean.Double type is generally used in plant

model and RCP. It is not subject to this rule.

In some cases, embedded software uses double type. However those cases are special

case. Since number of double type use must be minimized, careful setting on necessary

blocks is needed.

See Also
Last Change (V4.0

© Copyright 2013JMAAB. All rights reserved. 88

4.6. Simulink pattern

Below is an explanation of the classic patterns often used in the Simulink model.

4.6.1. db_0114: Simulink patterns for If-then-else-if constructs

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes

db_0114: Simulink patterns for If-then-else-if constructs

Strongly Recommended
MAAB

All

The following patterns should be used for If-then-else-if constructs:

Functionality

Switch Block is used
IF THEN ELSE IF construct

if (If_Condition)
{

output_signal = If Value;

else if (Else_If_Condition)

{

output_signal = Else_If Value;

}

else

{

output_signal = Else_Value;

}

IF THEN ELSE IF construct
using Action Subsystem

if (Fault_1_Active &
Fault_2_ Active)

{
ErrMsg = SaftyCrit;

else if (Fault_1_Active |
Fault_2_Active)

{
ErrMsg = DriveWarn;

}

else

ErrMsg = NoFaults;
}

Simulink pattern

Els=_If_Valus doupE

boolean i(u1)
Fault_1_Active

boolean

ut

elseif(ut) | (u2)) [=F - - ‘

2 soion
Fauft_2_Active N else 7

DriverWarn

else [} soutie
You

NoFaults

&(U2) L —i i m

. SaftyCritMsg

double

elseif {1 P
Oou

a

ErMsg

While listed as an example explanation, If Action Subsystem is normally not used when

switching the fixed value.

Update History V2.0

© Copyright 2013JMAAB. All rights reserved.

89

4.6.2. db_0115: Simulink patterns for case constructs

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0115: Simulink patterns for case constructs

Strongly Recommended
MAAB

All

The following patterns are used for case constructs:

Function

Case constructs
using Switch Case Action
Subsystem

switch (PRNDL_Enum)
{
case 1
TgEstimate = ParkV;
break;
case 2
TgEstimae = RevV;
break;
default
TgEstimate = NeutralV,
break;

}

Case construct
using Multiport Switch block
switch (Selection) {
case 1:
output_signal =

look1_binlxpw(In2, y1, x1, 3U);

break;
case 2:
output_signal =

look1_binlxpw(In3, y2, x2, 3U) ;

break;
case 3:
output_signal =

look1_binlxpw(In4, y3, x3, 3U) ;

break;
default:
output_signal =

look1_binlxpw(Inb, y4, x4, 3U) ;

break;

J

Update History V4.0
Matched the Multiport Switch block example to the latest version code generation function

Change

classifications

and replace

Deleted unneeded examples

© Copyright 2013JMAAB. All rights reserved.

Simulink pattern

—SEREL o™
PR P! |

: untd "
i <{Selection>
HUALHEERE = 001 [sec]

1-D T(u)
m double | double 5 1
o <h2>

1—El_LP|okup

1-D T(w)
doubke |2

: doublke
<h3> i

al TqEstimate
o

doublke

(D

In3

D Lok

1-D T(u)
doubke doubke |3
D “

In4

1-D Lookup
ESTe
1-D T(u)

: double
<IhE>

In§

double s 4

tput_sienal
output_siena outl

1-D Lookup L
Tabled

Multiport

Switch

90

4.6.3. db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks
Priority Strongly Recommended

Scope MAAB

MAT.LAB Al

Version

Prerequisites

Use the following patterns for logical constructs:

Function

Conjunctive normal form

Description

Disjunctive normal form

Update History V1.0

input_signall
input_signal2

input_signal3

input_signald

input_signals

input_signalf
input_signal?

input_signald

input_sianall
input_signal2

input_signal3

input_signald

input_signala

input_sianals
input_signal?

input_signald

4.6.4. db_0117: Simulank patterns for vector signals

ID: Title db_0117: Simulank patterns for vector signals
Priority Strongly Recommended

Scope MAAB

MATLAB All

Version

Prerequisites

© Copyright 2013JMAAB. All rights reserved.

91

Simulink pattern

AND -

AND Ll OR |—————
output_signal

AND —]

OR —

OR | f{anD ——————
output_signal

OR —

Description

The following patterns are used for vector signals:

Functionality

Vector signal and parameter
(scalar) multiplication

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector|i] *
tunable_parameter_value;

}

(Reference: generated code of
R2013b)

for (i=0; i < input_vectorDim; i++) {
output_vector[i] =
tunable_parameter_value *
input_vectorfil;

Vector signal and parameter
(vector) multiplication

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] *
tunable_parameter_vector(i];

}

Vector signal element multiplication

output_signal = 1;

for (i=0; i>input_vector_size; i++) {
output_signal = output_signal *
input_vector[i];

}

Vector signal element division

output_signal = 1;

for (i=0; i>input_vector_size; i++) {
output_signal = output_signal /
input_vector[i];

}

Vector signal and parameter
(scalar) addition

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector][i] +
tunable_parameter_value;

}

Vector signal and parameter
(vector) addition

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] +
tunable_parameter_vector(i];

}

© Copyright 2013JMAAB. All rights reserved. 92

Simulink pattern

tunahle_parameter_value
input_vector output_vector

Gain

tunahle_parameter_wector
input_vector output_vector

[\\! Gain

I

Product

input_wectar output_signal

_
input_vector TT
Froduct

output_signal

input_vectar

output_vectar
| tunable_parameter_valua

Caonstant

input_vector

output_vectar
‘tunable_parameter_\rectnr

Constant

Vector signal element addition

output_signal = 0;
for (i=0; i>input_vector_size; i++) { input_vectar Z
output_signal = output_signal + -

output_signal

input_vector(i]; surm

Vector signal element subtraction

output_signal = 0;

for (i=0; |_>|nput_vector_s.|ze; i++) { UL vecior ‘Z outpUt_signal
output_signal = output_signal -

input_vector(i]; sum

e ———
input_signal [min - -
. output_signal_min

hinhdax

— e
ad
F

Retention of minimum Unit_Delay
value/maximum value —

—
input_vector max
> autput_wectar_max

Ilin b

1

M

Unit_Delay

~ [oupui_signal_change
z

Unit_Delay Relational
Operator

Y

input_signal

input_vector

Edge detection o veror thange
z

Unit_Delay Relational
Operator

input_vector =
output_vector_change
z

Logical
Unit_Delay Relational “Peratar
Cperatar

Update

History vio

4.6.5. na_0012: Use of Switch vs. If-Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem
Priority Strongly Recommended

Scope NAMAAB

MATLAB All

Version

Prerequisites

The Switch block should be used for modeling simple if-then-else structures, if the

Description . ; : .
P associated then and else actions involve only the assignment of constant values.

© Copyright 2013JMAAB. All rights reserved. 93

double

IF_Walue —]
baolean dauble
> !

IF_Condition

double
Else_Walue |—— w1

The if-then-else Action Subsystem should be used in the following cases:

® If the associated then action or else action requires complex calculations, use the if-
then-else construct from within the conditional control flow for modeling. By doing
so, not only the simulation efficiency, but also the generated code efficiency, will
improve to the maximum limit (in basic blocks such as Table Lookup, pay attention
to cases where quite complex calculations are required).

o if(ut)
DynamicSlipFlag else
If

Y

ifru
“outt

TireSlipConst

Y
WheelSpeed €lse {}

L A i

Out1

EngSpeed

CalculateTireSlip

Last Change V4.0

_[Merge

TireSlip

4.6.6. na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches

ID: Title na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches
Priority Recommended

Scope NAMAAB

MAT_LAB All

Version

Prerequisites

na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

Frequent use of the condition bifurcation by Switch block should be avoided.
It should be operated based on a set upper limit target value. (For example, up to 3

levels)

Description If the target value is exceeded, in its place a conditional control flow using the If-Then-

else Action Subsystem can be listed.

Incorrect: Nest is in 4 levels

© Copyright 2013JMAAB. All rights reserved. 94

EJ—LH\

Constantd

T —] DR
Constant7

o> EDSIR

Inl . -—’_u _‘—'*4\ Switch
GConstant8 Switchb -|"=u

2]
G n "
i , = | -
D) Switch? outl
Constant | el 5 y
Switchs

o [z -

Constant 10
In§ E} >—4 °";:»—’_{—~k

Gonstant3] _|~} -
s = . _|~ 4 J Switch8

-

[l

Constant2 Switchd
. : Switch2
Constant4 el ;\
-
Constant§ Switchd

Correct: With if-action Subsystem in 4th level, nest is limited to within a single level.

iflul > 0)
ut
il else
¥
if{}
©2 Lpfin2 1
e
o
(|
If Action Subsystem Meree 1
else {} t1
2 Meree
(3] in3
Outy
D in4
b B K
D, in5
Ins

[In5]

If ActingfSubsystem1

ik
Action Port ‘\
Constant2 .
CO—— =0\ —>

el

—Iik Switch2

n3
—a
Switch
Constant1 T\
o

Incorrect: Not divided in if-action form.

© Copyright 2013JMAAB. All rights reserved. 95

In2

Out2

It Outt

Suksystem ! "\
CO—sH=0

5
@

Switchd

Out2 ——

3=

i | Ty

On5) Suksystemi

In the cases where the C code limit is reflected, it can be split into Atomic Subsystem +
Function Setting. In this case, there is no need to use the if-then-else Action Subsystem,
but the Switch block configuration can be split partway through, and merely
encapsulated in the subsystem.

Example of model with 5-level nest
Incorrect:

@ 1) [
Int Gotol Constant ‘j\
[in1] <| =0 ——D)
Outt

=
—a
In2 Goto2
Switch
> cangtant1 H\
In3 Goto3 H=o
o

From1

(&> [In4] —1
In4 Switchl

Goto4

=
5
GotoS Constant2 .
[)—ri =0

From2

C@tﬁ A

—a
-—>5
- 4\ Switch3
Constant4
-
E] From4

Constant5 Switch4

I

Correct: Description method that avoids layering of Switch nest

© Copyright 2013JMAAB. All rights reserved. 96

Gonstant — If Action

Subsystem

else {}
Outt

6 N
If Action
Subsystem1

Action Port

A% = held
fErgEy = 1/2
iflul > 0)
(—|ul
i else

Constant1 It Action
Subsystem
Meree —b@
else {} ‘ﬂﬁcﬁ)r';] i
FIRRIB =
In2
(G)—»fm2 out(h
In3
CE—m \
Ind o
e, ——
Subsys
Action Port GConstant2 4\
beld CO—{ =0
2 Outl
a FHEAE =0
4 ‘_ Switch?2
Constant3
@ =0 J
3
] e
Constantd =, Switch3
CO—f=0
Int
—a
Gonstant1 Switchd

While listed as an example explanation, If Action Subsystem is normally not used in
switching the fixed value

Notes In both the Correct and Incorrect above, if the user does not add a function conversion
setting, the generated C code is the same. (Confirmed in R2010b to R2013a)
This rule is not a constraint in the C code.

See Also Orion_bn_0003: In place of multiple Switch, use the If-Then-Else Action Subsystem
Last Change V3.0

© Copyright 2013JMAAB. All rights reserved. 97

4.6.7. jc_0658 :Usage rules for Action Subsystem using conditional control flow

ID: Title jc_0658: Usage rules for Action Subsystem using conditional control flow
Priority Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites na_0012: Use of Switch vs. If-Then-Else Action Subsystem

If the associated all actions do not have a status variable, the If-Then-Else Action
Subsystem (Conditional Subsystem) should not be used.
This rule adds strict limits to na_0012.

No status variable: Use the Switch, Multiport Switch, and Index Vector.
With status variable: The If-Then-Else Action Subsystem is usable as necessary.

However, if the Action Subsystem exists in a layered lower layer, and if the status
variable exists only in the lower Action Subsystem, the upper layer Action Subsystem is
not used.

For cases where a certain number of blocks or more are included in the related then
Action and else Action rather than the Action Subsystem, use and list the normal
subsystem and block that have a switching function (Switch, Multiport Switch, Index
Vector). (Define and use the upper limit value for number of blocks.)

Correct:

iftul >0)

s

Inl

else

If

y
if{}

h2

In4 Outt

In5

. . <
Description / ¥ acnonsubsymm\ ™| Meree |——»(T)

" 4 3 Outl
3 Action
Int

C Outt

Ind In2

If Action Subsysteml

Act

i

min
O—> Outl
Ind ,—> + TER(E = [

FIER{E = 0

Example of model with 5-level nest
Correct:
Since there is no internal state, layering using the subsystem is not performed.

© Copyright 2013JMAAB. All rights reserved. 98

(7 [ER——
In1
Gotol Constant
[in1] 4;\0;4@
[

[in2]] From

—a
In2 Goto?
Switoh
[n3] Constant1 i\
R

Goto3

From1

(&> [In4) —a
In4 Switch1

Goto4

@, {ins]
In5 Gotob 4\
Constant2 - -
.[ln1] .4 =0

From2

C%Z:IO\J?M

From3

—a
i
4\ Switch3
Constant4 <| -9

From4

Constant5 Switch4
Correct:
The Atomic Subsystem is used to split either side of the Switch without using Action
Subsystem.
J—F
Constart o
Constart 1 3 if { Flag1 "=0) Y1=X1
else if{ Flag2 "=0) Y1=X2
S else ifl Flag3 "=0) Y1=X3 :)ow
CID—»fret else Y1=X4
&.—.Flas?
X1 &—»Flm
GCorstant3 EI In3 if elee block
(2
it { Flag1™=0)Y1=X1
Caonstantd - -
[B—b X3 eles if{ Flag2 "=0) Y1=X2 v p—

Constanth else Y1=X3
CO——f
Tnd
CO—f2
Ink T efos blook]

Incorrect:
Layering using an unnecessary Action Subsystem is performed.

© Copyright 2013JMAAB. All rights reserved. 99

Constant — If Action

Subsystem

else {}
)y
h2
In?
3 Outt
CO— Since there is no block that has a state
variable in this level, there is no need to
:Ins [use the Action Subsystem.
Tf Acton T

Subsystem1
—

Action Port
JREE = held
PEREEr = 1/2
iflul > 0)

else

Constant1 It Action

Subsystem

Meree —>®

eise {1 mE%?%‘ 0
fARAIE =
In2
In3 Outh
In3
CO—
Ind N

i \

¥
Subsysgm1
| |

Initialization of this state
variable is also executed

at the time of initialization " T"\
of the upper layer, and el T
executed several times [+] =

Constant3

in the same cycle.

While there is no problem
with the calculation result,
wasteful processes are
performed.

I Unit Delay

If a function can be achieved even without using the Action Subsystem, then layering
using the Action Subsystem is not performed.

In the Incorrect example, when the lowest level UnitDelay existing on the third level is
initialized, first, the conditional subsystem initialization is executed one time on the upper
first level, and then the conditional subsystem is initialized on the second level for a total
of two times of initial value settings. In order not to generate unnecessary code, in levels
where the state variable does not exist, it is recommended that no listing be made in
conditional subsystems.

In addition, this rule does not coexist with na_0028, and becomes a selective expression
rule.

Select and use either one within the model.

na_0028 is based on the concept that the model (not the code) complexity is reduced by
dropping to a level. This rule is a rule for the purpose of avoiding execution of
unnecessary initializations.

© Copyright 2013JMAAB. All rights reserved. 100

Notes

See Also
Last Change

While unrelated to the regulations in this rule, the bifurcation of systems where the
bifurcation condition nest has a deep structure is split by function conversions so as to
lower the code bifurcation nest. For this purpose, functions before and after the Switch
block are divided into respective subsystems, and function settings are performed for the
Atomic Subsystem+-function. However, since there is a possibility that unintentional
implementation could result in addition of unnecessary RAM, a check of trade-offs is
required. Since both have their strengths and drawbacks, select a description method
that matches the model.

V4.0

4.6.8. jc_0623: Use of Memory block vs. Unit Delay block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See Also
Last Change

jc_0623: Use of Memory block vs. Unit Delay block
Recommended
JMAAB

All

* The Memory block is not used within discrete type models or subsystems.
(Use the Unit_Delay Block.)

- The Unit_Delay Block is not used within continuous type models or subsystems.
(Use the Memory Block.)

V4.0

4.6.9. jc_0624: Guideline for using the Delay block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0624: Guideline for using the Delay block
Recommended
JMAAB

R2011b and later

® If wanting to obtain a vector signal that includes past values, rather than lining up
multiple Unit Delays, the Tapped Delay block should be used.
® If wanting to obtain the oldest value only, the Delay block should be used.

Tapped Delay block example

Correct:
¥
h? Qutl
Tapped Delay Sum of =
Elements1
Incorrect:

© Copyright 2013JMAAB. All rights reserved. 101

o—{L I
% H H
Untt Delay Untt Delay1 Unit Delay?2 Untt Delay3
e
e Sum of Sl
Elements
S S —> .
I3 2
Untt Delayd Unit Delay5 Untt Delayf Unit Delay?
—
> Out3

Bdd
Delay block example
Correct:
h2 Qutl
Delay
Incorrect:

e]) Ry NS

2 . . - - Outl
Unit Delayd Untt Delay5 Untt Delayf Untt Delay?

Supplement

® The Tapped Delay and Delay blocks are set with arrays holding past values, and have
improved code visibility to assist code efficiency.

If the number of delays is frequent (for example, five or more), using the Delay block

means performing settings for use of code using a cycling buffer, which can assist
execution speed.

"l Function Block Parameters: Delay [
Delay

Delay input by a fixed or variable number of samples. Based on an external signal,
the block can reset its state to the specified initial condition (from dialog or input
port). The block supports both circular and array buffer for state storaze.

Main | State Attributes |
Data

Notes

Source Value Upper Limit

Delay length: 5
Initial condition: 00

Alzgorithm

External reset: [Nane % J

Input processing: [Elements as channels (sample based) v]

[¥] Use circular buffer for state I

Sarmple time (-1 for inherited): -1

] [ok][cancel][Help Apply

See Also
Last Change (V4.0

4.6.10. jc_0651: Guideline for use when implementing cast

ID: Title jc_0651: Guideline for use when implementing cast

© Copyright 2013JMAAB. All rights reserved. 102

Priority Strongly Recommended

Scope JMAAB
MAT.LAB All
Version

Prerequisites |jc_0628: Guideline for using the Saturation block

If implementing down cast, it should be split with operations (addition, subtraction,
multiplication, division) for other purposes.

This is virtually the same purpose as clearly listing parentheses, and clarifying the
execution order.

Dividing the operations and cast can help to clarify the order of execution and up to which
operation should use which data type in the block structure.

Blocks implementing down cast consist of the following three types of blocks:

1. Data Type Conversion

2. Gain: However, value is 1

3. Saturation

If there is not otherwise a particular reason, use Data Type Conversion.

Gain block is an alternative block that is often used when Data Type Conversion cannot be
used due to tool constraints.

Saturation is used when implementing a saturation process and down cast in a single
block. However, use of Saturation is not desirable when the saturation process is used for
purposes of overflow prevention.

If using something other than Data Type Conversion, use block names or annotations to
add comments for clarifying that it is a cast.

Correct:
Example of using Data Type Conversion

uint16 (2)
= B « uint32 (2)
uint
D H t 12
escripton
p Constant Product Data Type Conversion
BHTA-)—JO—=on

Constant1 Data Type Conversionl
BHTH—)\—TJO0—=on

Perform cast, unify the internal data type, and clearly show the calculation order.
Incorrect:

unt16 (2) []
G L

Inl

e uint 16 L unt 16 (2) »(T)
Outl

Constant

T

onstant] Lo
ik Divide
HEHTA—)—20—=0on

All cast processes is consigned to auto code.

Correct:
Example 1: using other than Data Type Conversion

Int

sfix16_En12
sfix32_En24 =,]\ sfix16_En12 =®

X
sfix16_En12 [
3.142 sfix16_En12 Out2

BHTA—)N\—J0—=0on
Constant Product1

© Copyright 2013JMAAB. All rights reserved. 103

Shows that it is a cast in the Gain block name.

Correct:
Example 2: using other than Data Type Conversion
- sfix16_En12 ufixd 6_Enl 2AD 30 A ZERE
In2 sfix32_En24 msﬁxlﬁ_EnQ
X > - »(1)
sfic16_En12
- Saturalipn Rt
Constant! Product2 i;f% :Il

Change to a value smaller than the type constraints, and implement cast.
Use comments near Saturation to clarify the cast implementation.

Incorrect:
unt1f
:Im « |unts2 <[
unt16
PPPY SLULLENE By >+ %)

Dwvide

Constant 7 :
. unt16 unt32 ETA—)—70— = on

Constant! Data Type Conversion

Since operations and cast are processed in the same block, the precision of calculations in
progress cannot be confirmed. In this case, it can not see the accuracy of the calculation
during during division. (Simulink automatically changes to 32bit operation. And after
operation, it is restored to 16bit. Although it relies on Simulink function, It is better to set
data type explicitly.)

Incorrect:

D Ll
i 4 x16_Enl
2 x |sfx32.En2 G sfix16.En12 NED

a1eg [EX16.E012 Iag el

Constant?2 Product3

While there is an exclusive Gain block for cast, it is not clearly understood that its purpose
is cast.

Although Correct and Incorrect both depend on the configuration setting, since virtually the same
code can be obtained,
the purpose is not for the generation code, but for becoming able to confirm the process in the model.

Block usage pattern

Usage pattern Saturation process Down cast
9ep Implementation block Implementation block
_ DataTypeConversion
Type conversion only (No overflow saturation)
(No saturation process) Gain: 1
Notes - (No overflow saturation)
Type conversion after DataTypeConversion
saturation process (With overflow saturation)
for purposes of overflow Gain: 1
prevention (With overflow saturation)
Not for purposes of overflow Saturation/Dynamic Saturation
_prevention (Type conversion in output type setting)
(with significance)
Type conversion after Saturation/ DataTypeConversion
saturation process Dynamic Saturation (No overflow saturation)

© Copyright 2013JMAAB. All rights reserved. 104

See Also
Last Change

Gain: 1
(No overflow saturation)

MISRA SLSFO002A
V4.0

4.6.11. jc_0652: Constant related to timer counter

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes

See Also
Last Change

jc_0652: Constant related to timer counter
Strongly Recommended
JMAAB

All

The constant related to the Timer Counter is not expressed by the number of occurreces
but by that specific time.

If the number does not match the time, use a comment to list the time unit.

Can also list in <Block Property> <Explanation> or mpt.Parameter description, and
display by using block annotation. Use a consistent method, and insert descriptions of the
time unit also for the listing content. [List the time units that have been determined, such as
second(s), milliseconds (msec), etc.]

Correct:
Constant is expressed in time
S SNPLE TIME = 0003 [s] S TIOE = 080 [s]
""“"
Gy o1
nl —n

Incorrect:
Constant is not expressed in time
/7 CTUP =1 /4 TEN=10

1

If real number is used, total value may not be equal to real counting time. In that case, set
in consideration of the tolerance.

(D

V4.0

4.6.12. jc_0659: Usage restrictions of signal lines inputted to Merge block

ID: Title
Priority
Scope

jc_0659: Usage restrictions of signal lines inputted to Merge block
Strongly Recommended
JMAAB

© Copyright 2013JMAAB. All rights reserved. 105

MATLAB

Version Al

Prerequisites
No blocks should be positioned between the Conditional Subsystem and Merge block.

Correct:
ot =0) |erenescaamsciamneiame e
double ut il oot |
Pul |
Gengrgteor 1 1 ' _X}
.m " oun
Constant2 !__If_ﬂgtifn_Subsystem? |
.! bu Merge ;@
¢ 2 Meree 1 Scopel
[o Jonter ™ Vou
Constant3 If Action Subsystem3
Description
Incorrect:
double iffut "= 0) e L S,
ut Sl _lac:tion I
Pulse I '
Generator2 |
|
;Oonstant If Action Subsystem [
i bus1 | Meree
e Merge Scope
Constant1 If Action Subsystem|
Analysis:
A virtual block can be inserted between the Conditional Subsystem and Merge block.
Reference: Virtual block
http: //www.mathworks.co.jp/jp/help/simulink/ug/about-blocks.html
The above subsystem can also output normal results.
However, if the above is allowed, there is a possibility of inducing two mistakes.
This is because it is difficult to understand all of the virtual block types shown in the above
Help, and to use the correct combinations.
For example, the Example 1 DataTypeConversion block is not a virtual block. This will not
operate correctly.
Example 1
double | iflul "= 0) EC"?OE '''''''''
Notes n i _Iactlon |
Pul .
Gengrzteorrl 1 | +

; if{}
! double Bl 1.3“1;1.3 Convert | double
Ponstantﬁ If Action Subsystem®ata Type Conversion

M double
i eree

Merged Scoped

I:
. dotble . IR - Q**Ie Corvert|.dduble

Constant? If Action SubsystemPata Type Conversioni

This uses the checker 'mathworks.design.MergeBlkUsage', to detect this case as a
violation.

In the next Example 2, the configuration is virtually the same as the Incorrect example, and
the input signal to the Bus Creator block is connected from the Ground.

Example 2

© Copyright 2013JMAAB. All rights reserved. 106

See Also
Last Change

=) eetion L.
double ul action |
else N 5

Pulse 10 +
ienerator 11 | - doubl
' double | o ifLh outl
| a Quto | doubl
(?onstantQD If Action Subsystem20
2 Bus] Meree double (2
| e e
| *” 2 Merge 10 Scopel0
else
3 d°“ba'e int Outt
Constant21 If Action-Subsystem? :
|
1 1
1 |
L Ground 1 N

In this description, since the Ground block is always active, the bus name b signal always
has an output value of 0, and correct results cannot be obtained.

The checker 'mathworks.design.MergeBlkUsage' recognizes that this case is correct.

If a model in the Incorrect example is created, and then converted to the Example 2 type in
accordance with later changes in specifications, it will result in unintentional actions.

The intention of this rule is prevention of these mistakes beforehand.

V4.0

4.6.13. jc_0656: Guideline for using the Conditional Control block

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0656: Guideline for using the Conditional Control block
Strongly Recommended
JMAAB

All

In the Conditional Control Flow block (if block, Switch Case block), use the settings below
to make all actions in the conditions explicit.

® For the if block, set "else condition display" to On for use.

® For the Switch Case block, set "display default case" to On for use.

Correct:
Modeling when a function showing the default action exists

action
case [1]:

int8 ti
uin ul case [23 1] f.(.:.h:on v

i case: { |
! default: .?Ctgon(Z) double Int Suti double
E In

Switch Case

2
Switch Case Action Subsystgm

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
A 4

double case: { double double
1 Outl Merge

In3
Switch Case Action Subsystem1
v
double default; { } | double Merge
®_’ Int Outl

In4
Switch Case Action Subsystem2

5
c
&

A 4

Out1

Correct:
Modeling when a function showing the default action does not exist

© Copyright 2013JMAAB. All rights reserved. 107

iflul) ECt_iDﬂ ___________ -
N)
- di 1 oy |double » e double
. action Ihd
CEURI Sea e s a I Action Subsystem Cut 1
| Merge
elze ECt_iDn -
-: doub ke 1e'se'fé}un doullz
I Tn#
T I If Action Subsweteml
|

Terminator
Incorrect:
Default port does not exist.
case [1] action '
uint8 H
ut action Y
i case [23 11225 Z double 1 S35 (l)}uﬂ double
- {2 __>
Switch Case 1 Switch Case Action Subsystem
; Merge double
P - Outd
A 4
double 101525 (l)}utl double
3 Merge
Switch Case Action Subsystem1
Incorrect:
Default port is not used and all values of used data type are defined.
case [0 laction _ _ . _ . _ . _._. -
{ :._’uintﬁ ul case [1 2] action _ | doubl ca:{} doubl
() ouble : ouble o
il caze [24667] ECt—ioﬁ i i Hutt =
T — | ! Switch Case Action Subzvatem N double
| - Meree
- Out
[I -
' 1t | daubl
| .3 double » 1 =355 4Ly | doubls
(2 Merge

Switch Case Action Subzvsteml

T I
- double » Imcase:é}u“ double
bt Switch Gaze Action Subsvstem?
As seen in this model, even if conditions are set on the full range of input signal types, if
data type of input signal is changed, undefined range can exist. This description does not
mean clarification has been made for all conditions.

hisl_0010: Guideline for using the if block and Action Subsystem block
See Also hisl_0011: Guideline for using the if block and Action Subsystem block
MISRA AC SLSF 011B

Last Change V4.0

4.6.14. jc_0657: Retention of output value based on Conditional Control Flow block and
Merge block

jc_0657: Retention of output value based on Conditional Control Flow block and

ID: Title Merge block

© Copyright 2013JMAAB. All rights reserved. 108

Priority Strongly Recommended

Scope JMAAB
MAT.LAB All
Version

Prerequisites

If using the Conditional Control block (if block, Switch Case block) to switch the executed
function, and using the Merge block to select the results, and if, depending on the
conditions, retaining past values only, connection of the condition ports to the Terminator
block will clarify retention of past values. (This is different to setting default port)

Correct:

Switch-case example

cass LRI double
Y
- {1
double Imﬂase ks ouble
COPEE st coel2a 208 e T Potion
il Terminator Subsystem
3 o double 7
ldouble PRLALEL BEOBERT erge
de fault: ol
Meree
Switch Case
default: {}
adouble b 0 double
Ind -
If Action
Subsystem1
Correct:
if-else example
double i) st ion '
Or—— ¢= |bookan i
ik -) double if{} double
double Relational G
Operator T
[If Action
inti onstant 1 elseiffu?) oo - : ubsystem
Description 2 o a
: > double
! Meree ——»(1)
U « » A
s bookan o
In2 = 2 . Terminator Merge
Relational ase FotON
doub! b I?naI
perator
doubke | etse {1} ldaubke
It Ind -
If Action
Subsystem1

If performing automatic code generation, a highly efficient code is outputted without taking
up excess RAM. This means that, if past values are retained even in other than default
(else), connections to the Terminator block can be used.

Incorrect:
case [11 action i
uint8 i
O™l - x
Ini case [23]: .?.EE:onI double 11 °2%% [O]ut1 double
: i 2 >
Switch Case i Switch Case Action Subsystem
E Merge double
O ; Outl
A 4
double case: { } doub‘;
®_> In1 Outl
Merge
In

3
Switch Case Action Subsystem1

© Copyright 2013JMAAB. All rights reserved. 109

It If Action Subzystemi

ity paetion
it{}
(2 double plint T4 | double >
Ind o | Meres
I Action Subsystem il
Merge
u? elzeifful) ECt-iDﬂ
C:douhle » Ime'seiféi“ double
Ind

double
Qutl

While the automatic code generation results are the same as above, it is not clear
whether actions outside of conditions are OK with retention of past values.

Incorrect:

caze [1]

case[?:}]:—-—-l

(: uintd et

double

laction + (g ydoubly it °** B

Switch Casze l I

I default:

2
Switch Gaze Action Subsystem

h A

double =®

¥

Merge

double

: (g)duubly, in1°%% Sh

Switch Caze Action Subsystem 1

double

default: {}
pfint outt

L

Wse Action Sub

zteml

¥

Merge

1

default {}

Action Port
double

(Tydowble EEI D

Inl Outl
Signal

Conversion

Incorrect:

© Copyright 2013JMAAB. All rights reserved. 110

double

— g

2
Unit Delay

Qutl

ity [Eetion -
S
dD pk, T,y [double >
elseiflu?) laction _ = In2 :
If Action Subsystem
' ¥ Merge da ble=©]
! Outl
o
lse |[Etion ’
else | da 1EISEIFé}ut1 doutble Merge
! Ind _
T I If Action Subsystem]
| ___________
¥
lze {1
pnt - fuy [double
/mc:tion Subzystem?
1
ouble | 2
Unit Delay
elze {1
Action Port
D double » EI double > T
Ini Qut 1
Signal
Corversion

While the actions are clear, design of excessive subsystems is necessary for retaining

past values, and in some cases the code efficiency deteriorates because of verbose RAM
allocation.

It is better to describe comments around Terminator blocks in order to clearly show that it
is the block structure to retain past values.

hisl_0010: Guideline for using the if block and Action Subsystem block

See Also hisl_0011: Guideline for using the Switch Case block and Action Subsystem block
hisl_0015: Guideline for using the Merge block
MISRA AC SLSF 011B

Last Change V4.0

Notes

© Copyright 2013JMAAB. All rights reserved. 111

5. Stateflow

Explanation of the Stateflow® chart appearance, data and operation, event, state chart pattern, and
flowchart pattern guidelines

5.1. Stateflow variable settings

5.1.1. db_0123: Stateflow port names
ID: Title db_0123: Stateflow port names

Priority Strongly Recommended
Scope MAAB

MATLAB Al

Version

Prerequisites

The name of a Stateflow block input/output should be the same as the corresponding signal.
Exception: Stateflow blocks performing reusable function settings may have different port
names.

Description Stateflow blocks include the Chart block, MATLAB block, and Truth Table, etc.

If adopting jc_0602, this rule is included within it. If jc_0602 is not adopted, use this rule for

the Stateflow description only.

This rule is not a rule for C code generation.(if data objects are used.)
This rule is for improving model readability.
[[N

Mismatch with Simulink Same as Simulink signal 4
. S Ethvotte | wnoe o .
throttle : spee B Doy speed_fa
s Shgle RN —— —{ speed
Bl 3 e FF]l— peed |
e s sl sp s_fa
i 3 N t
P pr € 02 fa
o EMAP) MAP
TR ~_single BME 73 RiE=0
R €D = »E© fuel T)0 g fucl mos
60 -£EGO \ = EGO N 1
] il = 2ol = control_logic
BME=BAE=] control_logic B)ME = [RATE =] log
0 oo 0,
Notes - - - Stateflow diaaram ta determine control sust
a fuelsys_ctr_IN_NO_ACTIVE CHILD; 577 fuelsys_ctr_IN_NO_AGTIVE CHILD; -
b 578 fuelsys_ctr_aw3_code_DWork is_Fueling_Mode = 578 fuelsys ctr_aw3 code_DWork is_Fueling_Mode = !
579 fuelsys_ctr_aw3_cod_IN Shutdown; 579 fuelsys_ctr_aw3_cod_IN_Shutdown;
580 580
531 /% Entry ‘Shutdown’: '(54>:29' ¥/ 581 /% Entry 'Shutdown’; '(S54:29' */
562 fuelsys. de = DISABLED; 582 mode = DISABLED;
589 Telse if (§real Tispeed slj > max sfeed) { w1} {883 Telse (lireal Tispeed] > max_speed) { «
584 7 Tran S, 584 Trame Lo
585 /% Exit Internal ‘Running": <S4>:23' %/ 585 /% Exit Internal ‘Running’: '<S4>:23 %/
= 586 /¥ E =l
=L 587 fuel i i i i = i
@ | The C source uses the signal object name whichis [*
589 fuels; 1 1 elsys ctr_IN_NO_ACTIVE CHILD;
i set on Simulink.
591 B
592 fuelsys_ctr_aw3 code_DWork is_Rich_Mixture = 592 fuelsys_ctr_aw3_code_DWork is_Rich_Mixture =
593 fuelsys ctr_IN.NO_ACTIVE_GHILD; 59 fuelsys.ctr_IN.NO_AGTIVE_GHILD;
594 fuelsys_ctr_aw3 code_DWork is_Fueling_Mode = 594 fuelsys_ctr_aw3_code_Diork is_Fueling_Mode =

See Also MISRA AC SLSF 036-C
Last Change V1.0

5.1.2. jc_0700: Unused data in Stateflow block

ID: Title jc_0700: Unused data in Stateflow block
Priority Strongly Recommended

© Copyright 2013JMAAB. All rights reserved. 112

Scope JMAAB

MATLAB

Version Al

Prerequisites |

Unused data and events should not exist in the Stateflow block.

In R2010b and later, set the configuration parameter
diagnosis > Stateflow>"Unused data and events" to other than "None".

M & Configuration Parameters: ji:_0700/(fonﬁguation (Ac—tive) :: u
Select: . B
ggtl:e;nport /Export I Unused data and events: warning
De Scription ‘ S:Dagmolz;ltéosn Unexpected backtracking: warning _
g::r;p\lfa;:;?: Invalid input data access in chart initialization: [warning
Eﬁ%ig;:?: i?;sion No unconditional default transitions: [warning
I\O.dg?‘glalggigti ncing Trangition outside natural parent: [waming P
Transition shadowing: [none
:‘Aac:‘g;\;aézf:gfg?:;tation Undirected event broadcasts: [warning
gm:laéf:e::;git Transition action specified before condition action: [warning
|

See Also |MISRA AC SLSF 037G

Last Change |V4.0

5.1.3. db_0122: Stateflow and Simulink interface signals and parameters

ID: Title |db_0122: Stateflow and Simulink interface signals and parameters
Priority |Strong|y Recommended

Scope |MAAB

MATLAB Al

Version

Prerequisites |

Use the Simulink and Stateflow types as equivalent.

Description Select File > Chart Property > “Strict type specification in Simulink 1/0".

© Copyright 2013JMAAB. All rights reserved. 113

Chart: Chart
General {m[v)ocumeni;t'ibn |
Name: Chart
Machine: (machine)db 0122

Action Language: [C v }

State Machine Type: [CIassic v '

Update method: [Inherited w | Sample Time:

|[7] Ensble C-bit aperations

‘3/" User specified state /transition execution order

Export Chart Level Functions (Make Global)

[\;/ Use Strong Data Typing with Simulink 1/0

7 Execute (enter) Chart At Initislization
Initialize Outputs Every Time Chart Wakes Up
[7] Enable Super Step Semantics

“/ Support variable—size arrays

[7] Saturate on integer overflow

Create output port for monitoring: | Child activity
Debugger breakpoint: | } On chart entry

[7] Lock Editor

Attention: This option is going to be deleted on future version.

Property name difference of versions.

Up to R2008b, "Retain data type in Simulink and I/O"

From R2009a, "Strict type specification in Simulink I/O"

If “Use Strong Data Typing with Simulink 1/0” is deactivated and Simulink data type is not
double, Stateflow cannot be executed.

Last Change V2.0

Notes

5.1.4. db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables
Priority Strongly Recommended

Scope MAAB

MAT_LAB All

Version

Prerequisites

Variables only used inside the Stateflow Chart must satisfy the following conditions:

® All local data of Stateflow block must be defined on the Chart level or below the Object
Hierarchy.

® No local variables exist on the machine level. (That is, there is no interaction between
local data in different charts).

Description ® Parameters and constants are allowed at the machine level.

® | ocal data having the same name should not be included within the charts/states with

parent-child relationships.

Correct:
Local variable is defined under Chart

© Copyright 2013JMAAB. All rights reserved. 114

r Model Explorer —— B [E=RESE)

File Edit View Tools Add Help

BO e @8 F A0 Mesn BT
Search: by Name v Name: &Y Sewrsh
Model Hierarchy =) Contents of db.0125/Chart (only) Filter Contents Data Local

Logging | Deseription

4 Py simulink Root = Genersl
Column View: [Statefon v | showDetsils 1 abiectis) v

[Base Workspace Name: Local
a [g] abor2s Name. Scope Port Resolve Signa DataType Size Boispes
) Model Workspace Locsl Locsl B double
& code for abores [] Dsta must resolve to Simulink signal cbisct

(=%| simulink Desien Verifier results Size:
() Advice for db 0125
(G Configuration Gactive)

hart
o e e -
(] chartt

[] Lock dsta type setting sgsinst changes by the fixed-point tools

m

Complesity:

Initial value:

Limit range

Minimum: Masimurm: -
i —— . o o

Contents Search Results

Incorrect:
Local variable is defined on machine level on which signals can be shared among several

charts.
' Model Explorer - j =l E

file Edit View Tools Add Help
B3l e v (=) = o 2 g B
BO 4 e0R @E@E G S o[+l FE &
Search: by Name v Name: M Search
Model Hierarchy |2 ¥ 2 contentsof db.0125 (oniy) Filter Contents Data Local
4 Py simuiink Root Genersl | Description £
Column View: ShowDetsils 8 obiects) v B
[Base Workspace Name: Loodl
) Mosel Werkspace Model Werkspace
Code for db.0125 - Size:
PR SV ' Code for db.0125
%] Simulink Design Verifier results | | = k
%] simutink Desien ver-: Compleity: =

() Advice for db 0125

(G Configuration (Active) @ Adoufor'di 01126 O TR =
5 ohert (G Confieurstion Gactive)
I B Chart a Chart [7] Lock data type setting sgainst changes by the fixed-point tools
(i) Locsl
Limit rance

Minimum: Maximum:

Contents Search Results

See Also 'MISRA AC SLSF 037 B

Last Change |V4.0

5.1.5. jc_0701: Usable numbers in first index

ID: Title |jc_0701: Settable numbers in first index

Priority 'Mandatory

Scope IMAAB

MATLAB

Version Al

Prerequisites |

Set the first index of arrays used in Stateflow to "0" or "1".

Caution:

Description |Since the first index if not specified is handled as "0", there is no need for designation
unless specifically required.

Correct:

© Copyright 2013JMAAB. All rights reserved. 115

Data a

I General l Logging] Description :
[7] Save final value to base workspace
Firstindex 0
Units: B
Description:
Data a
| General I Loeging Description -

D Save final value to base workspace

First index 1

Units:

Description:
Incorrect:

Data a I

| General | Logging I Description :

[7] Save final value to base workspace

Firstindex 2

Units:

Description:

See Also

Last Change

V4.0

5.1.6. jc_0702: Stateflow parameters and constants

ID: Title |jc_0702: Stateflow parameters and constants
Priority |Recommended

Scope \IMAAB

MATLAB Al

Version

Prerequisites

Description

-Parameters and constants within Stateflow should not directly use numbers.
-Labels should be used for the parameters and constants within Stateflow.

Exceptions:
="0" can be used as an initial value for variables.
="1: can be used for variable increments and decrements.

Usage examples for ordinary parameters
Correct:

© Copyright 2013JMAAB. All rights reserved. 116

Nomall
en:
Cond = Hot;

Cold [Temp > LOW1
en: en:

[Temp > HIGH1]
N 1
Cond=Cold; [Temp <= LOW2 Cond = Nomal;

[Temp <= HIGH2]

Incorrect:

[Temp>0] [Temp > 120]

[Temp <= -20] =h [Temp <=100]

See Also MISRA AC SLSF 048G. H
Last Change V4.0

5.1.7.jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow
Priority Strongly Recommended

Scope MAAB

MATITAB All

Version

Prerequisites
In the Stateflow diagram, pointers to custom code variables should not be used.

Direct reference to pointer variable while accessing to device driver is inhibited.

Description Incorrect:
P void *pointerToVar = (void *) 0x32344a3;

Correct

uint32 Var = Signal;

This rule is not a rule prohibiting use of pointers within the custom code. Within the custom
code, pointers to variables within the custom code may be used for access.

Direct reference from Stateflow to variables declared in C code is possible.
Notes . Variable declarations in custom C source code.

MyStruct gMyStructVar,

MyStruct *gMyStructPointerVar=NULL;

. Description in Stateflow chart

© Copyright 2013JMAAB. All rights reserved. 117

One l Y Twos """"""""""""""""""""
i : i3
during R dur
eMyStructVar a = nput, HIE: EMyS tructVar DL = input+ o,
output a=gMyStructVar a* 3 I gM,SfructPonter\;at SgMyStruc Na.
output b = my_function{input); 10 tenstc=eMyStruct Pointer\ar=3bL
bl e

Stateflow can directly refer to the S|gnals of gMyStructVar and gMyStructPomterVar which
are defined in in C source code.

However, use of signals which is not defined in any model makes model difficult to
understand. Although this rule doesn’t limit, it is better to not use it.

Last Change |V1.0

5.2. Basic appearance of state transition

5.2.1. db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance
Priority Strongly Recommended

Scope MAAB

MATITAB All

Version

Prerequisites

-In Stateflow transitions, the following regulations are applied:
® Do not cross each other as much as possible.
® Do not draw upon the other.
® Do not cross any states, junctions or text fields.
However, crossing with forced transition from external states to internal states is

possible.
*For transition labels, set to show visual relationships with the corresponding transition.
Correct:
ctate [condition 1] -
[condition?2]
Description
()
[condition]
1 {
action?, action;
¥ }
AN

Correct:
Transition crosses state boundary to connect to substrate

© Copyright 2013JMAAB. All rights reserved. 118

InitState)

[InitComplete]

OuterState/

(innerstate/

S =

This rule is a rule for prohibiting transition overlap, and does not prohibit state transitions
from outside to center, or from center to outside.

Incorrect:
Transitions crosses each other and transition crosses through state.

Last Change V2.2

5.2.2. db_0137: States in state machines

ID: Title db_0137: States in state machines
Priority Mandatory

Scope MAAB

MATLAB All

Version

jc_0743: Guideline for writing condition actions

Prerequisites jc_0531: Placement of the default transitions

In all levels in a state machine, including the root level, for states with exclusive
decomposition, the following rules apply:

Description ® Inthe same level, at least two exclusive states must exist.
If parallel is selected, only one state can be established.

In the old description, jc_0531 was here: Only part of the default transition was listed, and
it was deleted since there were duplicated roots.

Last Change V4.0

Notes

5.2.3.jc_0711: Division in Stateflow

ID: Title jc_0711: Division in Stateflow
Priority Recommended
Scope JMAAB

© Copyright 2013JMAAB. All rights reserved. 119

MATLAB

Version Al

Prerequisites
Description

Notes

If using division, the user must perform modeling of process for avoiding division by zero.

See Also MISRA AC SLSF 038B

Last Change (V4.0

5.2.4. jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition
Priority Strongly Recommended

Scope JMAAB

MAT.LAB Al

Version

Prerequisites |db_0137: States in state machines

Default transitions should be drawn so that the following conditions are satisfied:

If an exclusive (OR) and substate exist, the default transition is internally established.
Multiple default transitions cannot be included in the same level.

Default transitions are directly connected to the upper part of the state or junction.
The transition destination state or transition destination junction for the default
transition is positioned in the far upper left within the same level.

The default transition must not exceed the state boundary.

The default transition within a state chart must have a non-guard path to the state.

Correct:

F—a

7 h
Description

Incorrect:
Multiple default transitions are included in the same level.

© Copyright 2013JMAAB

. All rights reserved. 120

74, ™

[E1]
[M]
]
;[! C1] [z2] T l (sl
)]

s vy

=

Incorrect:
The default transition is positioned in the side area.
The transition destination state of the default transition is not the highest within the same

level.

Al

Incorrect: The default transition exceeds the boundary.

p vy

Incorrect:
There is no non-guard transition.

© Copyright 2013JMAAB. All rights reserved. 121

—a

A ™y

R A

® |f the state with default transition is placed on most left-upper position,
transition goes from top to bottom or from left to right.

® Violation of“the default transition within a state chart must have a non-
guard path to the state.” can be avoided by setting
<Configuration><Diagnostics><Stateflow><No unconditional default transitions> to
warning or error.

- — —
&4 Configuration Parameters: jc_0700/Configuration (Active) . &J
Select: Stateflow A
| |
Solver ; 2 [
Data Import/Export Unused data and events: [warnlng ‘
Notes Optimization Unexpected backtracking: [warning
4 Diagnostics =
g::;p\lfa;:;?;‘; Invalid input data access in chart initialization: [warning— |
Type Oor'wlersmn I Mo unconditional default transitions: warning I |
Connectivity L3
Compatibility PP 5 7 A
Mads| Referencing Trangition outside natural parent: [warnlng
l 'low] Transition shadowing: [none
Hardware Implen:\entatlon Undirected event broadcasts: [warning
Model Referencing
Simulation Tarlget Transition action specified before condition action: [warning
Code Generation
| |

See Also MISRA AC SLSF 042ABCDE
Guidelines MISRA AC SLSF 051A (051A is a rule about layouts)

Last Change V4.0

5.2.5. jc_0712: Execution timing for default transition path

ID: Title jc_0712: Execution timing for default transition path
Priority Mandatory

Scope JMAAB

MATLAB All

Version

Prerequisites

In all Stateflow Charts, "Execute the specified Chart at time of initialization" must be
deactivated.
Description Release the selection of File > Chart Property > “Execute the specified Chart at time of
initialization".

© Copyright 2013JMAAB. All rights reserved. 122

"% Chart: OK T —— M

General | Documentation |
MName: oK
Machine: (machine) ic 0712
Action Languaze: [O v]
State Machine Type: [Olassic v]

Update method: Sample Time:

Enable G-bit operations

User specified state/transition execution order

[] Export Chart Level Functions (Make Global)
Use Strong Data Typing with Sirmulink IFO

[7] Execute (enter) Chart At Initialization

[] Initialize Outputs Every Time Chart Wakes Up

[] Enable Super Step Semantics

| Support varisble—size arrays

i Saturate on integer overflow
[7] Create output port for monitoring: (Child acfi-u-it;l v |
Debugzer breakpoint: On chart entry \
[Lock Editor I

| | ok || cancel |[Hep || Apply

See Also |MISRA AC SLSF 034D

Last Change |V4.0

5.2.6. na_0038: Levels in Stateflow charts

ID: Title |na_0038: Levels in Stateflow charts
Priority |Recommended

Scope MAAB

verson. A

See Also |

Within a single Viewer (Subviewer), multiple layering should be limited.
For example, within a single Viewer (Subviewer), limiting goals for up to 3 levels
should be established.

Description If the constraint goals are exceeded, use subcharting to switch the screen.

Incorrect: Level_4 a and Level 4 b have more than 3 levels, and are nested.

© Copyright 2013JMAAB. All rights reserved. 123

@veljf \
mave\j_af \
Hfl_evel_fi_a:' ™ rlr_eveI_S_bf N
Level 4 a/ Level 4 b/
\ AN &

Correct: The 4th level is encapsulated in a subchart.

ﬂvel_‘h’ \

/ Level_2_bi I
R
Level 3 b_a Level 3 b b
—

L

\>

See Also
Last Change V3.0

5.2.7. na_0040: Number of states per container

ID: Title na_0040: Number of states per container
Priority Recommended

Scope MAAB

Version Al

See Also

The number of viewable states per Stateflow Viewer (Subviewer) should be limited.
(Typically to 6 to 9 states per Viewer)
Description This number is based on the visible states in the diagram.

Correct:

© Copyright 2013JMAAB. All rights reserved. 124

Seven/

See Also
Last Change V3.0

5.2.8. jc_0720: Guideline for using subcharting

ID: Title jc_0720: Guideline for using subcharting
Priority Recommended

Scope JMAAB

MAT'LAB All

Version

Prerequisites

Subcharting is used in the following cases.

® State machine is hard to view on the screen.
® Hard to view in printed state.

This rule is not applicable to Atomic Subchart.
Subchart Example:

/i ’

\.

N —

:

-

Al
42 -
Description L
Bl

See Also MISRA AC SLSF 039B

© Copyright 2013JMAAB. All rights reserved. 125

Last Change |V4.0

5.2.9. jc_0721: Guidelines for using parallel states

ID: Title |jc_0721: Guidelines for using parallel states
Priority |Strong|y Recommended

Scope |JMAAB

Version

Prerequisites |

Parallel states should not be used for the purpose of grouping.
That is, the substates of parallel states should not be parallel states.

Correct:

R R R S N o g i Al S Al S A o
Al : v [Conditiont]
P OrV———=0 ;
b 47 bl
] ! }acﬂ.iom, !
[CorAl] |[conaz] ‘ E ‘k\,a 1 i

H LI €

H e,

Description SRS SR ST - T S

G & [Corditior‘Qc]-(D
P { .
T I]actinjre,'
' ! I
| [CarC1] |[Cono2] ‘ (g}: b A
G2 |
P
(S

Incorrect:
Substates of parallel states are parallel states.

© Copyright 2013JMAAB. All rights reserved. 126

“Groupt :

Py N /B

fértuu;:@

G

Thé fdijf étéifééﬂ(A,' B 'C','D”)' Vé'r'ér i'rrl'th'é 'éarﬁe'éx'écrtjtivo‘nv 6rdéf, even if there is no parent
(Groupl, Group2).

See also MISRA AC SLSF 040B
Last Change V4.0

5.2.10. jc_0722: Guidelines for setting local variables in parallel states

ID: Title jc_0722: Guidelines for setting local variables in parallel states
Priority Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites

Unless the same data is required by two or more parallel states, the scope of local variables
should be set to be restricted to one parallel state.

See also MISRA AC SLSF 037D
Last Change (V4.0

Description

5.2.11. jc_0723: Prohibited direct transition from external state to child state

ID: Title jc_0723: Prohibited direct transition from external state to child state
Priority Strongly Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites

The transition from external state to child state is prohibited.

Description However, it is possible to transfer from child state to an external parent state.

© Copyright 2013JMAAB. All rights reserved. 127

See also

® When viewed from the child, other parents that exist in parallel to one's own parent, or
the child of other parents, exist outside of objects that have been encapsulated.
Based on this premise, transitions that are direct transitions into other objects from
outside of an object should be prohibited.

If this transition is set, there is a high possibility that the concept of encapsulating the state

is incorrect.

Unless it is configured with a correct understanding of the concept of the state, the system

will become complicated and the content would not be understood. By using such

transitions, the state will become complicated, the specification will not be clear, and it will

be a factor in causing mistakes in the specification itself.

Correct: Incorrect:

The transition from the super State A0 to 7 The transition from the super State A0 to

another super State BO. + another child State B1.

The transition from the child State Al to The transition from the child State Al to
another super State BO. another child State B1.

B2

.~ 0/

However, if the super state A0 is a virtual state that does not exist in reality and was
created in order to use the internal transition or unify transition lines, it is classified in the
state referred to as virtual state or "pseudo state" expressed in UML. For this kind of state,
the above rules do not apply.

Virtual states, or states referred to as pseudo states, and normal states should be written
differently by distinction, and the scope of application of rules should be made clear.

Last Change |V4.0

5.3. Description of state label

5.3.1. jc_0730: Independence of state name in charts

ID: Title
Priority
Scope

MATLAB
Version

jc_0730: Independence of state name in charts
Mandatory
JMAAB

All

© Copyright 2013JMAAB. All rights reserved. 128

Prerequisites

State names must be unique in charts.

Atomic sub-charts within charts should be treated as separate charts.

In other words, state names must be unique in the atomic sub-charts, but there would not
be a problem even if the same state name existed in a different atomic sub-chart.

(Atomic sub-charts can be used from R2010b)

Correct:

Model A N Model B N

[conditon]

—_—

j_

j_

[a] [~a] [b] [~b]
OnA [“conditon] OnB
- J/ _ Y,
Incorrect:
Description
Model A ™ Model B N
Off A . Off A
[conditon]
[a] [“a] [a] [Ta]
]
OnA [“conditon] OnA
\§ J N)

Reference: Guidelines for creating an atomic sub-chart
Atomic sub-charts can be created from the right-click menu.

Group
Subchart

Ctrl+G
Ctrl+Shift+G

Atomic Subchart

© Copyright 2013JMAAB. All rights reserved.

@ Lﬁzg@" g’é
| &

Cut
Copy

Paste
Delete
Group & Subchart

Format
Decomposition
Execution Order

Ll

129

Cerl+X
Ctri+C

Ctrl+V

Del

(Atomic Model A

N\

[conditon]

(Atomic Model B

[“condition]

See also MISRA AC SLSF 052A

Last Change (V4.0

© Copyright 2013JMAAB. All rights reserved.

130

5.3.2.jc_0731: Slash (/) in the state name
ID: Title jc_0731: Slash (/) in the state name

Priority Recommended
Scope JMAAB
MAT_LAB All

Version

Prerequisites

Slashes (/) should not be included in state names.
Start a new line after the state name without describing executable statements.
Correct:

s00 s

Description |Incorrect:

{ o0/ T 501

In case of describing executable statements in continuation after state names, a slash (/) is
required.

See also
Last Change (V4.0

© Copyright 2013JMAAB. All rights reserved. 131

5.3.3. jc_0732 :Distinction between state name and data item name

ID: Title jc_0732: Distinction between state name and data item name
Priority Strongly Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites
In a single chart, the same name as the data item should not be given to the state name.

Correct:
Model_A N Model_B N
Off B
Off A [conditon == C1] -
[a==A1] [a==A2] [b==B1 [b==B2]
ok [conditon == C2] OnB
g J _ Y,
Description
Incorrect:
Model A N\ /Model B 2\

. Off B
[conditon == C1]
—

[ModeI_B==B1]I
l [Model B==B2]

OnB

[conditon == C4]

See also MISRA AC SLSF 052B
Last Change (V4.0

© Copyright 2013JMAAB. All rights reserved. 132

5.3.4. jc_0733: Order of state action types

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

jc_0733: Order of state action types
Recommended
JMAAB

All

Action types should be stated in the order of entry (en), during (du) and exit (ex).

* In the case of describing combination action types (en,du: , du,ex: , en,ex: , en,du,ex: , the

combination action types should only be described in the line at the top or the end.

Correct Incorrect
{
param3=0;
State Stae1
en: ex:
param1=0; param3=50;
param2=1; en,du:
param3=0; param1=param1+param2
du: en:
paraml=param1+param2; Sz:zm;;}
param3=10;
Description [(n1+param1)>.. [(n1+param1)>... [(In1+param1)> 3
param3] param3] paramal [S;rl;rgg]raml))..
State2 V
en: State2
param1=10; ex:
param2=2; param3=10;
en,du: en,du: ~ .
param1=param1+param2] epna.ram1fparam1+param2,
péram1:10;
param2=2;
The combination statement is at the center of the
whole.
The entry processing is described after the exit
processing.
See also MISRA AC SLSF 055A
Last Change (V4.0

5.3.5. jc_0734: Number of state action types

ID: Title jc_0734: Number of state action types
Priority Strongly Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites |jc_0733: Order of state action types

The same action types (entry (en), during (du), exit (ex), en, du:, du, ex: , en, ex: , en, du,
ex:) should not be described two or more times.

Description In particular, when using both the single actions of en and du and the combination action of

"en, du: ", the execution order should differ depending on the order in which they are
described.

© Copyright 2013JMAAB. All rights reserved. 133

See also
Last Change

If the action type is described more than once, the actual execution order will be hard to

understand.

Correct

Statel
en:
param1=0;
param2=1;
param3=0;
en,du:
param1=param1+param2;

param3] param3]

State2

en:
param1=10;
param2=2;

en,du:
param1=param1+param2;]

MISRA AC SLSF 055D
V4.0

[(In1+param1)>..j T [(n1+param1)>...

Incorrect

{
l]paramSi):

(Statel

en.
param1=0;
param2=1;

en:
param3=10;

28
param3=50;

en,du:
param1=param1+param2

[(In1+param1)>...

param3]

[(In1+param1)>.}
param3]

State2
en:
param1=10;
param2=2;
ex:
param3=10;
en,du:
paraml=param1+param2;

The entry is separated in two and described
twice.

5.3.6. jc_0740: Usage restrictions of action type exit

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See also
Last Change

5.3.7.jc_0501: Format of entries in a State block

ID: Title
Priority
Scope

MATLAB
Version

© Copyright 2013JMAAB. All rights reserved.

jc_0740: Usage restrictions of action type exit

Recommended
JMAAB

All

Exit should not be used when the design intent can be expressed by the transition
destination entry, condition action and transition action.

Because exit is executed when the state transitions to another state, the execution timing

will become ambiguous.

V4.0

jc_0501: Format of entries in a State block

Recommended
JMAAB

All

134

Prerequisites
A new line should:

® Start after state names.
® Start after the entry (en), during (du) and exit (ex) statements " : ".
® Start after the completion of an assignment statement ";".

Correct:

State

en:

entry value=T1;
during_value=0;
du:
entry_value=0;
during value=1;
ex

exit_value=1;
.~
Incorrect:

Failed to start a new line after en, du and ex.

Description

State
en:entry_value=1;
during_value=0;
duentry_value=0;
during value=1;
exexit_value=2;

Incorrect:
Failed to start a new line after the completion of an assignment
statement

State
en:entry_value=1:;during_value=0:du:entry_value=0:
during_value=T1;ex:exit_value=2;

This rule has intention of not indicating actions, such as en and du, behind the State
Notes name. It does not become violation even if it attaches / behind the State name.

jc_0731 is prohibition of /.
Last Change V4.0

5.3.8. jc_0735: Semicolons in state label

ID: Title jc_0735: Semicolons in state label
Priority Mandatory

Scope JMAAB

MATLAB All

Version

Prerequisites
The end of each action in state label must be a semicolon ";" .
Description

Correct:

© Copyright 2013JMAAB. All rights reserved. 135

Note: Action types (entry(en), during(du) and exit(ex)) are not subject to this rule.

[State
e ntny
ern_value =1;

",

Incorrect:

[State
e ntny
ern_valug =1

",

If the semicolon ";" is taken out, the value is outputted to the command window after
running the simulation.

It is convenient if it is used when checking operations, but the simulation speed will be
slower.

See also MISRA AC SLSF 043D
Last Change (V4.0

5.3.9. jc_0736: Uniform indentations in Stateflow blocks

ID: Title jc_0736: Uniform indentations in Stateflow blocks
Priority Recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites |jc_0752: Parentheses of condition actions

Indentations in Stateflow blocks should be described uniformly.
1. Example of state label rules
® No spaces in front of action types (entry (en), during (du) and exit (ex))
® Insert one space for other statements.
2. Example of transition-condition and action rules
® Do notinsert spaces before [].
3. Example of transition-action rules
® Always insert one space.

Description

© Copyright 2013JMAAB. All rights reserved. 136

Correct: Indentations are described uniformly.

l

/500 k.
entny

Oa=0;

Ob=0;

during

Oa=a+inl;

Ob=ax*x2;

entny

Ok=

during
Oc=c+inl;

e »

Incorrect: Indentations are not uniform.

l

(S00 S
entny

Cla=0;

h=0;

during

a=atinl;

Obh=ax*x2;

N

/

{El[a >=10]

P =k

[c>=10]
{

=0
i

(S001)
entny

Ob=;

Oduring

c=c+inl;

o J

Note:

In versions after R2012b, it is possible to use MATLAB language-based charts called Chart
MATLAB, instead of the conventional C-based ones.

In these MATLAB language-based charts, an indentation is automatically added at the time
of describing the state labels. The rules of indentation are unified by the following:

® No spaces in front of entry (en), during (du) and exit (ex) statements

© Copyright 2013JMAAB. All rights reserved. 137

See also
Last Change

® Insert one space for other statements.
Transition lines do not have an automatic indentation function.

V4.0

5.3.10. jc_0737: Uniform spaces before and after operators

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0737: Uniform spaces before and after operators
Recommended
JMAAB

All

Spaces before and after operators should be described uniformly.
1. Example of arithmetic operator rules
® For unary operators, do not insert a space between the operators and operands.
® For binary operators, insert one or more space between the operators and operands.

Correct:

A =BO+0(-1);

Incorrect: Incorrect:
A =BO+0O(-01); A = B+(-1);

2. Example of increment/decrement operator rules
® Do not insert a space between the operators and operands.
Correct:
a++;

Incorrect:
al++

3. Example of relational operator (comparative operator) rules
® Insert one or more space between the operators and operands.

Correct: Correct

[A O>0B] [A O>=0B]
Incorrect: Incorrect:
[A>B] [A>=B]

4. Example of logical operator and C-bit operator rules
® Insert one or more space between the operators and operands.
However, in the case of using negation operators [! , ~] and the complement of C-bit
operators [~], do not insert a space between the operators and operands.

Correct: Correct:
[A=B0O&OC] [A=1BO&OC]
Incorrect: Incorrect:
[A =B&C] [A =10BO&OC]
5. Example of assignment operator [=] and compound assignment operator [+=, -=, *=,

/=, %=, <<=, >>=, "= |=] rules
® Insert one or more space between the operators and operands.

Correct:

AO=0BO+0(-1); AO+=[1;
Incorrect: Incorrect:
A=B+(-1); A+=1;

6. Example of pointer operator [*, &] rules
® Do not insert a space between the operators and operands.
Correct:

© Copyright 2013JMAAB. All rights reserved. 138

A = fen(x,y,&map);
Incorrect:
A = fen(x,y,&C0map);

7. Example of array index [[]] rules
® Do not insert a space between the operators and operands.
Correct:
A=B[1] + Clk + 1];
Incorrect:
A =B0O[1] + C[k + 1];

8. Handling of new lines

® New lines may be started in the middle of an expression if there are many characters
in a line and it is unavoidable.

® For operators that require spaces, it is okay for new lines to be started immediately
before or after an operator, and the number of spaces before or after operators is
optional.

® However, for operators in which spaces must not be inserted, new lines should not
be started.

Correct:

Incorrect:
The expression is hard to read because there are no spaces.

#==13

O

Operand: It means operation target value and variables in computer programming.
For example, in the expression “A+10”, “A” and “10” are operands. “+” is operator.
Unary operator is used to express minus value like “-1”

Binary operator is used to express one operation like “+” in “K+3”

Notes

See also
Last Change (V4.0

5.3.11. jc_0738: Guidelines for writing comments in state actions

ID: Title jc_0738: Guidelines for writing comments in state actions
Priority Recommended

Scope JMAAB

MATLAB Al

Version

© Copyright 2013JMAAB. All rights reserved. 139

Prerequisites

When using /* */ in the comment, new lines must not be started in the middle.
This is in order to prevent duplicated comment symbols /* */

Correct:

=00

du:

acci = egrpm_acc + inrpm_acc;
A SHEBRAR SO A L koS
Fitest = (acc? % 23 + &;

P e S0)

fftestout = test # 2;

Description

Incorrect:
{300 Ty
du:
acce = ezrpm_acc + inrpm_acc:
A SRERFR S DO oS
M --O AT RS-
test = (acc? % 20 + 3:
L B P S)
testout = test % 2;
see- QAL ETROREET - o
M A
Note:
In versions after R2012b, it is possible to use MATLAB language-based charts called Chart
Notes MATLAB, instead of the conventional C-based ones.
In these MATLAB language-based charts, only the % comments used in MATLAB language
can be used for comments.
See also

Last Change (V4.0

5.3.12. jc_0739: Guidelines for describing texts inside states

ID: Title jc_0739: Guidelines for describing texts inside states
Priority Recommended

Scope JMAAB

MAT_LAB All

Version

Prerequisites

Texts inside states should not be described beyond the boundaries of that state.
Description |Correct:

© Copyright 2013JMAAB. All rights reserved. 140

/gtatm \

l

SubStatel _off

A# Statel OFf TimerZount */
ertimer = 0

dutimer += dt

[timer » off_time]

[timer > an_time]

SubStatel on

A% Statel On TimerCaount */
entimer = 0

dutimer += dt

. S

Incorrect:

The transition condition goes beyond the boundaries of the state

Statel

SubState! off
/% Statel OFf TimerCount ./
entimer =0

dutimer += dt

[timer > |off_time]

[timer > on_tine 1

SukStatel on

A% Statel On TimerCount
entimer = 0;
dutimer += dt

The state action goes beyond the boundaries of the state

© Copyright 2013JMAAB. All rights reserved. 141

Statel

SukStatel off
A% Statel Off TimerCount %/
entimer =0,

dutimer += dt

[timer > off time]

[timer > on_time]

SubStatel on
/% State! On TimerCount #/
ntimer = 0;
dutimer += dt

The comment goes beyond the boundaries of the state

Statel

SubState! off
/% Statel Off TimerCodint */
entimer = O

dutimer += dt

[timer > off_time 1

[timer » on_time]
SubStatel on
A% Statel On TimerCoupt */
entimer = 0;
dutimer += dt

See also MISRA AC SLSF 050F
Last Change V4.0

5.3.13. jc_0741: Timing to update the variables used in the state's transition conditions

ID: Title jc_0741: Timing to update the variables used in the state's transition conditions
Priority Recommended

Scope JMAAB

MATLAB Al

Version

Prerequisites

Variables that will be used in the state's transition conditions should not perform an update
by "during".

Note

The processing of "during” will be executed if a transition does not occur after the state's
transition conditions are executed.

If a statement such as the "Incorrect” below is made, there is a possibility that the transition
timing will be delayed by one sampling

because the transition will use the results executed one time prior.

Description

© Copyright 2013JMAAB. All rights reserved. 142

Correct: Incorrect:

a = f =ztahblel):

i)
{
a = f_stable;
} [a == 1]
[a == 1]
I -- ™y
.r"'c -, c
. ,x . J
function v = f_stable function v = f_stable

See also
Last Change (V4.0

5.4. Conditions and conditional actions

Describes the method of condition description that will be common in the description of both state
transition and Flow Chart.

5.4.1. jc_0742: Guidelines for writing Boolean operations in condition labels

ID: Title jc_0742: Guidelines for writing Boolean operations in condition labels
Priority Strongly Recommended

Scope JMAAB

MAT.LAB All

Version

jc_0751: Backtracking prevention in state transition

Prerequisites jc_0773: Guidelines for describing exception processing

If there are up to three conditions, they can be described on one line.

If there are two or more types of Boolean operations, priorities should be described
using parentheses.

If there are four or more conditions, they can be described in more than one line.

If two or more types of Boolean operations are described in more than one line,
Description position of operations (before conditions or after conditions) should be unified in the
chart.

Correct:
Multiple conditions are described on one line

© Copyright 2013JMAAB. All rights reserved. 143

Qy\j—_ o [cordition! && corditior? &&. condtior3] %?j-_ &
’Q;Q: e [(corditiont &&: conditior) || coreition3] %?T = ‘

[cordition! &R conditior? &&. condtion3]

[{corditiont &R. conditior?) || cordtion3]

O

Correct:
Multiple conditions are described on more than one line

(positions of operations are unified to after conditions)
[conditiont &&..

A corditiorZ &&. .

AT —h coreltions] 437 —h

" [{conditiont. &2, conditior2) |]..

07—+ corctiord) 27—
=0
=0

[corvitiont &&..
condition2 &R, ..
condtion3]

8.

[(corditior! &R corditiore) || ...
cordtion3]

O

Correct:
Multiple conditions are described on more than one line

(positions of operations are unified to before conditions)
[conditiont & conditior? .

n &R, condtion3 &&. condtiond]
%AT —h WAT b

{corditiont &&. corditior?) ..

o || {cordtion3 &R. cordtiond)]
AT P l
O
=0

%AT —h

[conditiont 8R. conditior? ..
&R, cordtion3 &R cordtiond]

O

[{corditiont &R conditiore) ..
|| (cordtion3 &R. condtiord)]

Incorrect
Although different types of logical operator exist, priority by using parenthesis is not

shown.

m [condtiont &2 corditiong
%2F —h Il corcitior &2 condtiond J K217 = I

[corditiom && corditiong
=

|| cordtion? &2 condtiond]

Incorrect:

© Copyright 2013 JMAAB. Al rights reserved. 144

Four conditions are described in one line.

Al _ [corditiont &R, conditior? &&. condtion3 &&. condtiond 1 (B1 _
AT —h AT

[conditiort &2, conditior2 &R, condtion3 &R, condtiond]

O =0

In this rule, the writing method of Boolean operations within conditions as well as its
limitations are described.
Here, there is no description of how to separate a single condition or its limitations.

Notes In the case of separating a condition, a description that adheres to jc_0751 for state
transitions and to jc_0773 for Flow Charts is necessary so that backtracking does not
occur.

See also

Last Change V4.0

5.4.2. jc_0770: Placement of conditional statements and action statements

ID: Title jc_0770: Placement of conditional statements and action statements
Priority Recommended

Scope JMAAB

MATLAB Al

Version

Prerequisites |db_0129: Stateflow transition appearance

For the placement of the conditional statement of the Flow Chart and the action
statement, select either of the following and unify it within the model (1 is
recommended)

1. Describe from near the transition origin of the transition (transition line).
2. Describe near the center of the transition (transition line).

It is important to know which transition's condition the conditional statement and action
statement belong to.

Also ensure that the conditional and action statements do not overlap with other
characters and lines.

(db_0129: Stateflow transition appearance)

Correct:
[out[i] € indatal

! >€}f >(P

Description

Incorrect:
It is difficult to know which transition (transition line) the condition belongs to.

[out[i] < indatal

| G

© Copyright 2013 JMAAB. All rights reserved. 145

Notes
See also
Last Change V4.0

5.4.3. jc_0771: Placement of comments in transition lines

ID: Title jc_0771: Placement of comments in transition lines
Priority Recommended

Scope JMAAB

MAT.LAB Al

Version

Prerequisites

Placement of comment descriptions in transition lines
Unify to either the top or bottom of the conditional statement.
Unify to either the top or bottom of the action statement.
"Unifying the descriptions to the top side" is recommended.

It is important that which conditional statement the comment corresponds to is explicitly

stated.

Description Example

S comment)

E{:) f comment)
i

J# comment #/ action;

[condition]
See also

Last Change V4.0

5.4.4. jc_0772: Execution order and transition conditions of transition lines

ID: Title jc_0772: Execution order and transition conditions of transition lines
Priority Mandatory

Scope JMAAB

MATLAB Al

Version

Prerequisites

Transitions other than the last one in the execution order must always set conditions.
Description
Correct:

© Copyright 2013 JMAAB. All rights reserved. 146

Incorrect:

[c1]
2

Execution order 1 is an unconditional transition and conditional expression [C1] is described
in execution condition 2.

Examples includes state transition
Correct:

520

‘ [ui=t11]

Incorrect
Priority of unconditional transition is higher than conditional transition.

[_.oo] §70 (500
1 e
5 T (520
[;,ﬂj] j ibg =

Ej =

In state transition, uncontitional transition is not invariably necessary.

.)j
S
2 B

See also
Last Change (V4.0

5.4.5. jc_0752: Parentheses of condition actions

ID: Title jc_0752: Parentheses of condition actions
Priority Recommended

© Copyright 2013 JMAAB. All rights reserved. 147

Scope JMAAB

MATLAB

Version All

Prerequisites
The parentheses of condition actions should make one line just by the parentheses.
(Start a new line before and after parentheses.)

Correct Incorrect

Description e [ytts]

The example was described in the Flow Chart but the same applies to state transitions.

See also MISRA AC SLSF 054E
Last Change (V4.0

5.4.6. jc_0743: Guidelines for writing condition actions

ID: Title jc_0743: Guidelines for writing condition actions
Priority Strongly Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites
The writing method of state condition actions and Flow Chart actions are shown below..

Describe a semicolon (;) at the end of an action.

If there is one action
Example of a state condition action:

{
action: [B

}

Description

Example of a Flow Chart condition action:

{

action;

If there are two or more actions, describe them in more than one line. (Multiple actions
should not be described in 1 line.)

© Copyright 2013 JMAAB. All rights reserved. 148

See also
Last Change

Example of a state condition action:

{

actianl;
actian?;

Example of a Flow Chart condition action:

|
actianl;
actian?;

V4.0

5.5. State transition

5.5.1. jc_0750: Guidelines for drawing transition lines in Stateflow

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0750: Guidelines for drawing transition lines in Stateflow
Recommended
JMAAB

All

The transition lines inside the state chart are drawn by horizontal and vertical straight lines.

Correct Vertical:

|

0
nthy:

1]

0;
(83

ri

%D’m
@

a=a+inl;
b=ax*x2;

[after105ec]] {[after(1 0zec]
{CFb' c=h;

e 1

10
during
a=za+tinl;
bh=ax2

Correct Horizontal:

© Copyright 2013 JMAAB. All rights reserved. 149

0 A (&10
entry: during
a=0; [after{10sec]] a=a+inl;
b=0; { b=a*2;
during: (==
a=a+in; }
h=ax2;
S {[after(1 0,g2c]] X
=y
1
Incorrect:

The transition lines from state to state are connected by curved lines

{[after(1 Ogec]]

}

See also

Last Change |V4.0

|MISRA AC SLSF 053E

o=h;

5.5.2. jc_0751 : Backtracking prevention in state transition

© Copyright 2013 JMAAB. Al rights reserved.

150

ID: Title jc_0751: Backtracking prevention in state transition

Priority Mandatory
Scope JMAAB
MAT'LAB All

Version

Prerequisites

Complex conditions must not be separated by connective junctions.
(In order to prevent backtracking)

Correct: Complex conditions are described all together.

Incorrect: Complex conditions are separated by a connective junction.

[Condition && Condition?]

Detailed patterns are descrived below.

[T onditiont] . [Condifion?] D

Correc

L

B

[(C1==0N)&&(C2==0N)]

Description

Q‘

{
}:ConditionZ] out = 2;

out =1;

Correct: All connective junctions have branches.

e -
1

[(C1==0N)] [(c2==0N)]
1 1
¢

2
[[ConditionZ] {

=3
out =2; 1 out

out =1;

a
© Copyright 2013 ;IMJ 151

Correct: Two conditions are described together.

[Condition3]

1

(L [(C1==0N)8&&(C2==0N)] f [(C1 ==0ON) && (C2 == ON)]
{

{ out =2;
}

i | o |

Correct: Connective junction between conditions has branches.

[Condition3] a3
) en:

out=1;

[(C1=0ON)T _':[(02 ==0N)]
1

O—-

LD
2 [Condition2] | ! i
{ ot .
l out = 1: 1 1 out =2;
] | | }
1 1
r__

‘aZ

In case of C1==0ON and C2==0FF, transition seems to be terminated on the connective
junction after [(C1==0N)]. However, in case of C2==0FF, backtracking occurs and {out=1}
is executed.

Incorrect: Connective junction between conditions has only one path.

© Copyright 2013 JMAAB. All rights reserved. 152

i

[(C1==0N)IT T~ 1(C2==0N)]
gl

{
out =2
}

out=5; ’

N\

In case of C1==0ON and C2==0FF, transition seems to be terminated on the connective
junction after [(C1==0N)]. However, in case of C2==0FF, backtracking occurs and
[Condition3] is evaluated. In that case, even If C1==ON is true, if [Condition3] is true,
transition to a3 occurs.

jc_0773 intends to prevent backtracking on flowchart. Complying to that rule, unconditional
transition is designed to ensure transition reaches terminal junction.

However, on state transition, chart is intentionally designed so that transition doesn't reach
to terminal junction. This means if condition is not met, transition does not occur.

First connective junction is not branched. This can be understood as intended transition
inhibition.

However, in case not branched connective junction is placed between two conditions,
unintended backtracking may occur. This rule is in order to prevent it.

Description:
Example :Diagnosis
i N
&4 Configuration Parameters: jc_0751/Configuration (Active) lihj
Select: Stateflow =
Solver ” |
Data Import/Export Unused data and events: [none
Uptinization I Unexpected backtracking: [error
Notes 4 Diagnostics 3
Sample T'.me Ihwalid input data access in chart initialization: [warning
Data Validity
Type Gonversion No unconditional default transitions: [warning
Connectivity
GCompatibility i ; : -
Model Referencing Trangition outside natural parent: [warnlng
Saving A o -
Stateflow Transition shadowing: [warnlng
Flacduste Snelsinentation Undirected event broadcasts: [warning
Model Referencing
Simulation Tar.get Trangition action specified before condition action: [warning
Code Generation

T - I] »

J [OK H Gancel] I Help Apply

- Two continuous conditions connect with one junction.
- conditions exist further behind that.
This is detected as an unexpected back truck king.

© Copyright 2013 JMAAB. All rights reserved. 153

2 [Condition3]

[(C2==0N)]

1
£ [(C1==0N)]

O=—

out =2;

a2
du:
out=5;

This problem is detectable by diagnosis.

This rule is summarizing the beforehand continuous conditions to one, and aims at
preventing this problem beforehand.

The upper model is designed as follows.

OL.ltZOJ]

1 2

o o
5 =

[Condition3 && (C2 == ON)]
[(C1 == ON) && (C2 == ON)]

out =2;

a2
du:
out=5;

See also MISRA AC SLSF 043C
Last Change V4.0

5.5.3. jc_0754: Transition actions in Stateflow

ID: Title jc_0754: Transition actions in Stateflow
Priority Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites

Transition actions must not be used.
| Correct: | Incorrect:

Description

© Copyright 2013 JMAAB. All rights reserved. 154

[Fonditionﬂ [Condition]

Action] S Actiond:

See also MISRA AC SLSF 043B
Last Change V4.0

5.5.4. jc_0753: Condition actions and transition actions in Stateflow

ID: Title jc_0753: Condition actions and transition actions in Stateflow
Priority Strongly Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites

Condition actions and transition actions should not be mixed within the same chart.
They should be integrated into one.

ICorrect: Incorrect:
a a
[Condition1] {[Conditionﬂ
{ -
Description Action1; Actiont;
P) I)
7 { '/ Action2;!
Action2: © | | '
}
al al

See also MISRA AC SLSF 043 A
Last Change (V4.0

© Copyright 2013 JMAAB. All rights reserved. 155

5.5.5. db_0151: State machine patterns for transition actions

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Last Change

db_0151: State machine patterns for transition actions
Strongly Recommended
MAAB

All

The following patterns are used for transition actions within state machine patterns:

Equivalent Functionality State Machine Pattern

ONE TRANSITION n faction:
ACTION:
action;

TWO OR MORE
TRANSITION ACTIONS,

MULTILINE FORM: faction?,
(Two or more transition actionz;
actions in one line are not) action3:
allowed)

actionl;

action2;

action3;
V2.2

5.5.6. na_0013: Comparison operation in Stateflow

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

na_0013: Comparison operation in Stateflow
Strongly Recommended
MAAB

All

® Comparisons should be made only between variables of the same data type.

® If comparisons are made between variables of different data types, the variables need

to be explicitly type cast to matching data types.

Correct: Incorrect:

Same data type in "i* and "n" Different data type in "i* and "n"

. [i<n] j , [i<d]

I Hame I Data Tvpe I I Hame | Data Twpe I
[4] i uintd [14] i uintd
[j-ﬁ] h wintd [i%j] d int16
Correct:

Although “i” and “n” have different
datatype, explicit type cast is applied.

[int16(i)=d]

=O——=0)

© Copyright 2013 JMAAB. All rights reserved. 156

| Mame I Data Twpe
i Uintd
d int16

= T
S

1
S
i
1
3
i

[y

[cambar'

Incorrect:

Do not make comparisons between
unsigned integers and "negative
numbers."

[i<—1]
) =
I Mame I Data Twpe I
4] i uintd

Last Change (V2.1

5.5.7. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

ID: Title jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow
Priority Strongly Recommended

Scope MAAB

MATLAB All

Version

Prerequisites

® Do not use hard equality comparisons (Varl == Var2) or (Varl !=Var2) or (Varl ~=
Var2) with two floating point numbers.

® [f a hard comparison is required, a margin of error should be defined and used in the
comparison (LIMIT in the example).

® Hard equality comparisons may be done between integer data types.

Correct:

I MHame I Data Tvpe I
4] 1 double
4] d2 double

/# D LB +/

——

Description }diﬁ: = (d1-d2):

[(=LIMIT < diff J&R&(diff < LIMIT)]

2 :
Incorrect:

/4 D LB */

[d1 ==d2]

1
2

Last Change (V2.0

© Copyright 2013 JMAAB. All rights reserved. 157

5.5.8. na_0001: Bitwise Stateflow operators

ID: Title
Priority
Scope
Prerequisites

Description

na_0001: Bitwise Stateflow operators
Strongly Recommended
MAAB

Select File > Chart Properties.
Select "Enable C-bit operations".
Chart: C_Bit_Operations

MName: C Bit Operations
Machine: (machine) na 0001

Bitwise operators (*&”,”|”,”*",”~") should not be used other than bit operations.

To enable bitwise operations, follow the steps below:

State Machine Type: [Classir_

Update method: |Inherited » | Sample Time:

Enable C-bit operations

IUser specified stateftransition execution order

[] Export Chart Level Graphical Functions (Make Global)

|Use Strong Data Typing with Simulink 10

[7] Execute (enter) Chart At Initialization

[tnitialize Outputs Every Time Chart Wakes Up
[] Enable Super Step Semantics

Support variable-size arrays

Debugger breakpoint: [| On chart entry

[Lock Editor

| Data Twpe

boolean
boolean
boolean

I Data Twpe

Description:
Correct:
Use && and "||" for Boolean operation.
I MName
ol of
al|lb)&&c i
Lallbeac] -
Use& and | for bit operation.
I MHame
| 4] d
(dle)&f [1]e
b7 L] S Y

Incorrect:
Use & and "I" for Boolean

A1)
>
Q
=]
D
=
[hS)
=,
(=]
S5

© Copyright 2013 JMAAB. All rights reserved. 158

Lintd
wintd
Lintd

| Marme | Data Twpe
EHE boolean
4] b boalean
}_ Fi [(alb)&C] D’{ [4] boalean

List of operational effect of each operator

Operator C-bit operations are enabled
OFF ON

alb Boolean OR of a,b Bitwise OR of a,b
Notes allb Boolean OR of a,b Boolean OR of a,b

a&b Boolean AND of a,b Bitwise AND of a,b

a&&b Boolean AND of a,b Boolean AND of a,b

a’b bth power of a Bitwise XOR of a,b

la Boolean negation of a Boolean negation of a

~a Boolean negation of a Complement of a

Last Change V4.0

5.5.9. jc_0655: Prohibited comparison operation of logical type signal in Stateflow

ID: Title

Priority Strongly Recommended
Scope JMAAB

MAT_LAB All

Version

Prerequisites

jc_0655: Prohibited comparison operation of logical type signal in Stateflow

jc_0757: Condition expressions should set a comparison operator
na_0002: Appropriate implementation of fundamental logical and numerical operations

® |ogical operations must not be applied to boolean values.
Boolean type signals must not be compared with numbers (0, 1) or logical values (true,

false).

® Use Boolean operation (NOT) when inverting logical type signals.

® Usage of either ~ or ! for negation should at least be uniform in the chart.

Preferably, specified rules should be made for each project pertaining to the writing method
of negative statements, and they should be unified in the model.

Correct:

Description

7 boolean onie g umt 16
g Outd

Ghart

Incorrect:

© Copyright 2013 JMAAB. All rights reserved.

[! ONflg]
It is better to use
"I'" for negation

[CONfAg]

159

e [[onfg ™= 0] [] [[fonpg == 07 |

When using logical type signals as condition flags, it is not necessary to write the match
with true or false. If performing code generation, an optimized code will be outputted
regardless of whether it is described. This rule emphasizes readability by uniformity of

appearance.
See also
na_0001: If rules of bitwise Stateflow operators are adopted and bitwise operations are
made valid, "~" will be a complement of 2. If it is used in conjunction with na_0001, only "!"
can be used for negation.
Operator C-bit operations are enabled
OFF ON
Notes alb Logical OR of a,b Bitwise OR of a,b
allb Logical OR of a,b Logical OR of a,b
a&b Logical AND of a,b Bitwise AND of a,b
a&&b Logical AND of a,b Logical AND of a,b
a’b bth power of a Bitwise XOR of a,b
la Logical negation of a Logical negation of a
~a Logical negation of a Complement of 2

Last Change V4.0

5.5.10. jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow
Priority Strongly Recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Do not perform unary minus on unsigned integers.

Correct:
L

si16 var1=-si16 var2; [

I Mame I Data Twpe I
4] =ivar2 intl6

=

Description
Incorrect:
L

uil6_vari=-uil6_varZ; |

I3

I MHame I Data Tvpe I
H] uivar? uintl6

© Copyright 2013 JMAAB. All rights reserved. 160

Last Change (V2.0

5.5.11. jc_0755: Guidelines for use of increments/decrements

ID: Title jc_0755: Guidelines for use of increments/decrements
Priority Mandatory

Scope JMAAB

MAT.LAB Al

Version

Prerequisites
Increment/decrement operators should be used as one action.

Correct:
{ !
kett: .
s = out [k]: UG _werd++;
[U1E_werl == ulb_wer?]
Description =(_)
Incorrect:

a = out [k++]:

[U16_werl == (ulf_ver?++)]

=

See also
Last Change (V4.0

5.5.12. jc_0756: Prohibited use of operation expressions in array indexes

ID: Title jc_0756: Prohibited use of operation expressions in array indexes
Priority Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites
Sequence numbers should not be calculated in the array indexes.

Correct:
. I {
Description L+ k =k +5:
a = out [k]: }a=nut[k];
Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 161

{
a = out [k++]: }a=out[k+5]:

See also
Last Change (V4.0

5.5.13. jc_0757: Guidelines for describing condition expressions

ID: Title jc_0757: Guidelines for describing condition expressions
Priority Strongly Recommended

Scope JMAAB

MATLAB Al

Version

Prerequisites |jc_0655: Prohibited comparison operation of logical type signal in Stateflow
Expressions which return boolean value should be used for condition expressions.

Correct:
- o sesmnss
[indata == 1]
;::Q Name * ot Resolve DataTyp
[s1s) indata uints
Correct:
Description FlE1— [Stateflow v] S T
[indat El.] Name Scope Port Re: DataType Si
G ::Q J_uj indata Ihput 1 boolean
Incorrect:
| o e
[indatal

G ,'::C::] Name o Resolve DataTyp

(4] indata uints

See also
Last Change (V4.0

5.5.14. jc_0491: Reuse of variables within a single Stateflow scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope
Priority Recommended

Scope MAAB

MAT_LAB All

Version

Prerequisites

The same variable should not have multiple meanings (usages) within a single Stateflow

state.
Description Correct: Incorrect:
P Variable of loop counter must not be | The meaning of variable "i* changes
used other than loop counter. from the index of the loop counter to

the sum of a+b.

© Copyright 2013 JMAAB. All rights reserved. 162

Examples in state transition
Definitions of temporary calculation result variables a,b which are used
only in each state.

T

y

(SA1
en:

prel1=0;

pre2=0;
du;

a=alp* Tin;

b = fdiv(a,10):
prel = b;

pre2 = gainl#* b;

P

[(engSpd < 10) || (engSpd > 9000]] \ [flag]

SA2
en:

a = pre2 — prel;
b = fdiv(a,150);
dpre = b;

Correct:

Variables a.b are declared as local variable in each state.

© Copyright 2013 JMAAB. Al rights reserved.

163

EFIOME#E 2 =

4 ’i Simulink Root
[Base Workspace

= a5y

e~

y:

je_0491/0K ((Dap)

T YOIV

AFIThbEE 1215

4 jc_0491 Name Scop% Porl Resolve Siena DataType
E"} MOd?I Work.space [s) eneSpd Input 1 Inherit: Same as Simt
.@J Adwc.:e for.jc_0491‘ @ inputSie Input 2 Inherit: Same as Simu
& Confieuration (Active) o
< Bok L%U flag Tnput 3 double
O sal (&) Tin Input 4 Inherit: Same as Simt
O sa2 (&%) dpre Output 1 [] double
Sx tdiv |[5) pret OQutput 2 [7] double
s NG (i) pre2 Output 8 [7] double
[sat &) alp Parameter Inherit: Same as Simt
O Sf\? 4 eaint Parameter Inherit: Same as Simt
fx fdiv O sal
[sA2
S fdiv
EFNOISERE S = guFu o 0491/0K/SA1 (O3
R e pogs P2~ e
4 %U::Id — Name Scop’e Pori Resolve Signa DataType
lodel Workspace o7 i
(&) Advice for jc_0431 £ Lecal L e
@, Configuration (Active) b Foge! O doutls
4 FjoK
@ sat
3 sa2
Jx tdiv |
4 ’i Simm\l;‘ﬁoot : & = =
[Base Workspace Sl m AT
- D::ld o Name Scope Pori Resolve Signa DataType
[Model Workspace o
Advice for jo_0491 &2} b Local = Tk
{3 Configuration (Active) ik ol B R
4 B oK
3 sa1
@ sa2
Sx tdiv
Incorrect:
Local variables a,b are defined on upper layer.
4 ¥ Simulink Root o = - - -
[Base Workspace P2~ Eidiikecon AFVIHIEL 14717
. jc 0481 Name Scop’e Port Resolve Signa DataType Size
@ Mod_el Work_space [3%) eneSpd Input 1 Inherit: Same as Simulink -1
% 2::;?:u:::i;-u(;?::ive) @ inputSig Ihput 2 Inherit: Same as Simulink -1
+ 5ok @Vy flag Tnput 3 double
) sal (&%) Tin Thput 4 Inherit: Same as Simulink -1
() sA2 a Local] double
Sx tdiv | B Local B double
4 O] NG ‘|(3%) dpre Output 1 [] double
O sat (s pret Output 2 [7] double
a SAi? [5%) pre2 Output 3 | double
fx iy (5% alp Parameter Inherit: Same as Simulink -1
[5) gaint Parameter Inherit: Same as Simulink -1
3 sat
[sa2
Jx tdiv

|Last Change |V2.2

5.5.15. jc_0521: Use of the return value from graphical functions

|jc_0521: Use of the return value from graphical functions

|Recommended

\IMAAB

© Copyright 2013 JMAAB. Al rights reserved.

164

MATLAB

Version All

Prerequisites

The return value from a graphical function should not be used directly in a comparison
operation.

Correct:

An intermediate variable is used in the conditional expression after the
assignment of the return value from the function "temp_test" to the
intermediate variable "a".

i 2 = temp test0) 1 The data type of the variable in
the comparison operation is

= | e
& =9)

FICE
4 p:ﬁ?: temp_test()

Description

Incorrect:
Return value of the function "temp_test" is used in the conditional expression.

[temp testd == 1]

20

@enr‘ﬁ E’%”: termp_test()

Last Change V2.0

5.6. Internal transition of the state transition

5.6.1. jc_0760: Starting point of internal transition in Stateflow

ID: Title jc_0760: Starting point of internal transition in Stateflow
Priority Strongly Recommended

Scope JMAAB

MATLAB All

Version

Prerequisites
In all state charts and Flow Charts, internal transitions from state boundaries should start
. from the left edge of the state.

Description

Correct:

© Copyright 2013 JMAAB. All rights reserved. 165

@atﬂ \

_— [int > invaluel] [Statel .l

entry: out = out_valuel;

Lin2 ¥ invalus?] Statel! 2

entry out = out_value?;

&—1

State! 3
& entry: out = out_value3;

o /

@atc—ﬂ \
Evart é [inl > invalus!]
z
z

[in2 > in_value?]

-

{ out = out value3; } { out = out_value2; | { out = out_valuegl; |

o /

Incorrect:

@Late] \

Ewent

[int > insalust] Statel 1
’_DC‘I)_I entry: out = out_valuel;

[in2 » in_value?] Statel 2
&, entry: out = out valueZ;

Statel 3
entry: out = out_value3;
S .

© Copyright 2013 JMAAB. All rights reserved. 166

Notes

See also
Last Change

@ateW

Event

[int > in_valusl]

z
[inZ > invalue2]
7

z

{out = out_valued; }

{ out = out_value2; | {out = out valuet ; |

. /

If the super state Statel used in the example above is a virtual state that does not exist in
reality and was created in order to use the internal transition or unify transition lines, it is
classified in the state referred to as virtual state or "pseudo state" expressed in UML.
This state only unifies the transition lines, so it does not have a state action inside.

MISRA AC SLSF 053F
V4.0

5.6.2. jc_0762: Prohibited combination of state action and Flow Chart

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

© Copyright 2013 JMAAB. All rights reserved.

jc_0762: Prohibited combination of state action and Flow Chart
Strongly Recommended
JMAAB

All

State actions within states (starts with entry, during) and flow Chart statements should not
be used in combination.

Note

The execution order is hard to understand in writing methods that use the two combined,
and the behavior will not be understood intuitively. It should be unified to either a state
action or Flow Chart statement.

Correct: Incorrect:

[12>=100]

entry
12=0;
during

2

167

a
entry:

+1=0;
entry,during
t1++4

during:

1+

[t1>=100]

[t2>=100]

124+ {

See also
Last Change V4.0

5.6.3. jc_0763: Usage restrictions of multiple internal transitions

ID: Title jc_0763: Usage restrictions of multiple internal transitions
Priority Recommended

Scope JMAAB

MATLAB Al

Version

Prerequisites
Multiple internal transitions should not be used within a single state.

Correct:
21

Description

© Copyright 2013 JMAAB. All rights reserved. 168

51

Incorrect:
=1

31 \

[c1l

[cz]

[C3]

a

See also MISRA AC SLSF 043F
Last Change (V4.0

5.6.4. jc_0761: Statement method when using multiple internal transitions

ID: Title jc_0761: Statement method when using multiple internal transitions
Priority Strongly Recommended

Scope JMAAB

MATLAB All

© Copyright 2013 JMAAB. All rights reserved. 169

Version
Prerequisites

If multiple internal transitions are described out of necessity regarding an internal transition
within a single state, they should be listed from top to bottom according to the order of
execution of the internal transitions.

Correct:
/51 ™
a
[c1l
L7 =
b
. [c2] o
=3
|, [c3]
Description
h S
Incorrect:
e I
a
[c1]
L7 =
=3
2 [c3] -
b
[c2]
-2 i==|
See also
jc_0763: In the usage restrictions of multiple internal transitions, it is recommended that
multiple internal transitions are not used. However, in some cases, using multiple internal
Notes transitions can prevent transition lines from crossing and simply represent state transitions.
If multiple internal transitions will be used in such cases, use them in compliance with this
rule.

Last Change (V4.0

5.7. Flow Chart foundation

5.7.1. db_0132: Transitions in Flow Charts

ID: Title db_0132: Transitions in Flow Charts
Priority Strongly Recommended
Scope MAAB

© Copyright 2013 JMAAB. All rights reserved. 170

MATLAB
Version

Prerequisites

Description

Notes

Last Change

1. The following rules apply to transitions in Flow Charts:
® Conditions are drawn on the horizontal.
® Actions are drawn on the vertical.

2. Transitions labels of Flow Charts use a condition, condition action,
or an empty transition. (Transition action must not be used in flow charts)

Example
Transition with condition:

diti
[condition] =0

Transition with condition action:

{

action,

}

Empty transition:

O =)

Exception
5.7.4 db_0135: Flow Chart patterns for loop constructs

V4.0

5.7.2. db_0134: Flow Chart patterns for If constructs

ID: Title
Priority
Scope
MATLAB
Version

Prerequisites

Description

db_0134: Flow Chart patterns for If constructs
Strongly Recommended
MAAB

All

jc_0742: Guidelines for writing Boolean operations to condition labels
jc_0743: Guidelines for writing condition actions

The following patterns are used for If constructs within Flow Charts:

Functionality Flow Chart Pattern

© Copyright 2013 JMAAB. All rights reserved. 171

IF-THEN construct

if (condition){
action;

}

IF-THEN-ELSE
construct

if (condition) {
actionl;
}

else {
action2;
}

IF-THEN-ELSE-IF
construct

if (conditionl) {
actionil;
}

else if (condition2) {
action2;

else if (condition3) {
action3;
}

else {
action4;
}

Cascade of IF-THEN
construct

if (conditionl) {
actioni;
if (condition2) {
action2;
if (condition3) {
action3;
}
}
}

Last Change V1.0

© Copyright 2013 JMAAB. All rights reserved.

[condition)

action;

[conditian]

1

action;

[zondition1]

[zondition2]
B {
[condition?] gctinni; action;
{ { H
actiond, action?;
! h 5
[conditiont]
{
action1;
¥
[condition2]
{
actionZ;
}

[condition3]

{

actionad;

}

172

5.7.3. db_0159: Flowchart patterns for case constructs

ID: Title
Priority
Scope
MATLAB
Version

Prerequisites

Description

db_0159: Flowchart patterns for case constructs

Strongly Recommended
MAAB

All

jc_0742: Guidelines for writing Boolean operations to condition labels
jc_0743: Guidelines for writing condition actions

The following patterns must be used for case constructs within Flow Charts:

Functionality

CASE construct with exclusive

selection

selection = ...;
switch (selection) {
case 1:
actionl;
break;
case 2:
action2;
break;
case 3:
actiong3;
break;
default:
action4;

CASE construct with exclusive

conditions

c1 = conditionl;

c2 = condition2;

¢3 = condition3;

if (1 &&!'c2&&!c3){
actionl;

}
elseif (! c1 && c2 && ! ¢c3) {
action2;

}
elseif (! c1 && ! c2 && ¢3) {
action3;

else {
action4;

}

Last Change V1.0

© Copyright 2013 JMAAB. All rights reserved.

Flow Chart Pattern
O

selection= ..

}

[selection == 1]

{

action?;

[selection == 2]

{

action?;

h

[selection == 3]

{

actiona;

actiond;
ii;
¢l =condition?;
c2 = conditionZ;

c3 = condition3;

i
[c1 && 12 && 1c3]

1

action;

[lo1 &8 c2 && 1c3]

action2;

}

[lc1 &8 1c2 && c3)
{

action3;

}

actiond;

¥

173

5.7.4. db_0135: Flow Chart patterns for loop constructs

ID: Title db_0135: Flow Chart patterns for loop constructs
Priority Recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites jc_0743: Guidelines for writing condition actions

jc_0742: Guidelines for writing Boolean operations in condition labels

The following patterns must be used to create Loops within Flow Charts.

Functionality

FOR LOOP construct
for (index=0;index<number_of _loops;index++) {

action;

}

WHILE LOOP construct

while (condition) {
action;
Description |}

DO WHILE LOOP construct

do {
action;

while (condition);

Last Change V1.0

© Copyright 2013 JMAAB. All rights reserved. 174

O
{

&

O

[condition]

Flow Chart Pattern

[index < number_of_loops]

index++,

[condition]

{

action;

}

{

action;

'

action;

5.7.5. jc_0773: Unconditional transition of a flow chart

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

© Copyright 2013 JMAAB. All rights reserved.

jc_0773: Unconditional transition of a flow chart
Strongly Recommended
JMAAB

All

® All the flow charts, a graphical function, "Unconditional transition " when not fulfilling
conditions is required for it. It is for preventing backtracking.

® The priority of unconditional transition is set as the last.

In order to prevent backtrack, all flowchart and graphycal function provide unconditional

taransition which will not meet all conditions. (Use complex conditions in one place)

® Priority of unconditional transition will be set at the very end.

Correct:

function A_bunkli_else_if
/* State MRS} FILIE */

{

nowger = 3;
! [State ==3]
1

2

g} [State ==2]
1

2

nowger = 3;

{
[State == 1] jroveer =2

b
2 {
nowger = 1;
g)
(@)

Incorrect:
It does not have transition line of "Unconditional transition".

function A_bunkli_else_if
/* State DIRNS FALIE */
{
nowger = 3;
! [State ==3]
[O
2
é [State ==2] nowger = 3;
1
2
[State == 1] nowger =2,
nowger = 1;
O

Correct:
When a complex condition is summarized to one.

175

[(C1==0N)&&(C2==0N)]

Ot
2 q {
out =0; out =1;

@)

Incorrect:
There are no unconditional transition in a central junction.

[C1==0N] [C2==0N]
— =
2 {
out =0; out =1;
}
O
O
When the flow chart which outputs one by C1 == ON && C2 == ON is drawn as mentioned
above.

The high skill engineer, C1 performs out=0, when C2 is OFF in ON, and he understands
that processing is performed to a termination.

However, it is not easy to understand the course to a termination at a glance.

In this case, in order to avoid misunderstanding, following either is coped with and it leads
to a termination.

"A complex condition is bundled to one."

"Unconditional changes are certainly prepared.”

If you can understand Stateflow semantics,

When you drarw above chart which output 1 with C1 == ON && C2 == ON, you will know
that the process is ran to the end when execute out=0. However, it is difficult to understand
the path to the end at a glance.

In order to avoid misunderstanding, connecting to the end by using the methods below.

® Bundle complex conditions.
® Provide unconditional transition

This is a backtracking prevention rule of a flow chart.

Expression a flow chart "suspends processing in the middle of a junction in the case of
condition disagreement" unlike condition changes is not used.

Wire connection is carried out using unconditional transition array so that the last of
processing may become clear, so that it may certainly flow to a termination.

Notes
This is the rule to prevent backtrack of flowchart. This is different from conditional transition,
which will not use the expression like “Stop the process in the middle of the junction in the
case of mismatch conditions.” Wired it so that the end of the process becomes clear by
using undonsitional transition line to flow to the end.

See also

Last Change (V4.00

© Copyright 2013 JMAAB. All rights reserved. 176

5.8. Flow Chart detalls

5.8.1. jc_0774: Comments on unconditional transition which has no process

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Notes
See also
Last Change

jc_0774: Comments on unconditional transition which has no process
Recommended
JMAAB

All

jc_0773: Unconditional transition of a flow chart

When unconditional transition which has no action is used as exceptional processing in
case no condition is met, comments must be described to show intentionally no process
is described

Correct:
If there is unconditional transition which has no process, comment must be described.

function A_bunkli_else_if
/* State MIRND S} (FILIE */

{
nowger = 3;
! [State ==3]
L O

2
g [State == 2] (nowger =3
1
1
2
g [State == 1]]nowger =%
1
2
g /% Al LI LY */ nowger =1;
O

Incorrect:

Although there is unconditional transition, no comment is described.

It is difficult to understand whether unconditional transition was intentionally described or
description of conditions and actions was forgotten.

function A_bunkli_else_if
/* State DIRNS (FTALIE */

{
nowger = 3;
} [State == 3]
L O

2

{
é [State == 2]]nowger =3
1

2

[State == 1]

b
2 {
nowger = 1;
g})
O

{
nowger = 2;
1

V4.0

© Copyright 2013 JMAAB. All rights reserved. 177

5.8.2. jc_0511: Setting the return value from a graphical function

ID: Title
Priority
Scope

MATLAB
Version

jc_0511: Setting the return value from a graphical function
Recommended
JMAAB

R2008a and later

Prerequisites |db_0134: Flow Chart patterns for If constructs

Description

Notes

© Copyright 2013 JMAAB. All rights reserved.

The return value from a graphical function must be set in only one place.

Correct:
Return value A is set in one place.

funcéon A=F(B.C)
=0]
{
D=3;
1
Incorrect:

é [B==0] DQ [C=
Return value A is set in multiple places.

2z

{ {

D=1, D=2:
function A=F(B,C)

{
A=D;
1

Regarding R2007b and earlier, this rule has influence to code generation.

If incorrect pattern is used, multiple return sentences are generated.

This is violation to MISCA-C 1998 rule 82 and MISRA-C2004 rule 14.7.

If earlier versions are adopted, please operate this rule as Mandatory as same as Ver2.0.
In R2008a and later, C codes which has no violation to MISRA rules are generated.
However, for the purpose of getting efficient code, in some cases, it is necessary that
function setting of graphical functions are set not to "auto”,"inline" but to "function”.

In current versions of MATLAB, please operate this rule in order to unify appearances of
graphical functions.

178

r Y
*4 Function A_bunkli_else_if [é

General rDocumentatidm
Name: & bunkli else if

Function Inline Option: [Function v

——
-
&8

Breakpoints: [7] Function Call

[OK J[Cancel][Help][Apply

Last Change (V4.0

5.8.3. jc_0775: Number of terminal junctions in Flow Charts

ID: Title jc_0775: Number of terminal junctions in Flow Charts
Priority Recommended

Scope JMAAB

MATLAB Al

Version

Prerequisites |db_0134: Flow Chart patterns for If constructs

A unique terminal junction must exist in all graphical functions and Flow Charts described in
states.

Correct:

5

2

function set output cdatalinput)

;.

2 .
{ output = input; |

[input > valus0] Linput > valus0]

[output = input; | [output = valuel;]

{ output = valuel: |

Description

Incorrect:

function set output datalinput)

C%’ [input » valueO | (%r

7
2
| output = input; | {output = valuel; |

Linput > valusD]

L output = input; | | output = valuel; |

See also MISRA AC SLSF 053J
Last Change (V4.0

© Copyright 2013 JMAAB. All rights reserved. 179

5.8.4. jc_0776: Number of inputs to the terminal junction of Flow Charts

ID: Title jc_0776: Number of inputs to the terminal junction of Flow Charts
Priority Recommended

Scope JMAAB

MAT.LAB Al

Version

Prerequisites |jc_0775: Number of terminal junctions in Flow Charts

In all graphical functions and Flow Charts described in states, the number of transition lines
inputted in terminal junctions within all Flow Charts and graphical functions should be one.

Correct:

5

z .
{ output = input; |

funciifon set output datalinput)

L

2 .
{ output = Input; i

[input > valued]

[input » walued]

{ output = valusl; |

[output = valus1; |

Description

Incorrect:

function s=t_cutput_datalinput)

input > valusO
%] Linput > value0] é‘f Lingyt o valuel |
2) i loutput = input; | [output = valuel; |
[cutput = input; | | cutput = valuel ;|

The purpose of this rule is to explicitly indicate the point of completion.
See also MISRA AC SLSF 053K
Last Change (V4.0

5.9. Event
5.9.1. db_0126: Scope of events
ID: Title db_0126: Scope of events
Priority Mandatory
Scope MAAB
MAT_LAB ALL
Version

Prerequisites

The following rules apply to events in Stateflow:
® All events of a Chart must be defined on the chart level or lower.

Description ® There is no event on the machine level (that is, there is no interaction with local events
between different charts).
Notes It becomes the compilation error after R2009b.

Last Change V4.0

© Copyright 2013 JMAAB. All rights reserved. 180

5.9.2. jc_0780: Usage restrictions of events

ID: Title jc_0780: Usage restrictions of events
Priority Recommended

Scope JMAAB

MAT.LAB Al

Version

Prerequisites |db_0126: Guidelines for defining events

Events should not be used for anything other than calls in the Function Call Subsystem.
(State transitions by events should not be used.)

Correct:

Description

¥
function()
Int Outi

Out1

Funct ion-Cal |
Subswsten

If state transitions by events are used without fully understanding their operation, there are
Notes cases in which processing is unintentionally performed by recursive function and
processing is performed twice in one cycle.

See also MISRA AC SLSF 047A
Last Change V4.0

5.9.3. jc_0781: Function Call from Stateflow

ID: Title jc_0781: Function Call from Stateflow
Priority Recommended

Scope JMAAB

MATLAB All

Version

db_0126: Guidelines for defining events
Prerequisites |jc_0780: Usage restrictions of events
na_0006: Guidelines for mixed use of Simulink and Stateflow

If the "state exists" within the Function Call Subsystem of the call target and a "reset" of the
state is required when the state of the caller becomes inactive, a bind action should be
described by the caller.

forn call
Tge.In FocnTde

—p

Description

¢

functiord

uirtd

Court

Tale

© Copyright 2013 JMAAB. All rights reserved. 181

{ Dwot M
I}Mode == Dwit] bind : Fon_Dwiot
= T

1Count = Dwot_Ind

A vy

p—— g —————
A4 Mode == Tgle] rl_bm_d ~Fon T o6; _I

en . Forrge.
Count = Tgle_In;

du : Fon_Tgle;
Count = Tgle_In;

See also
Last Change (V4.0

5.9.4. jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts
Priority Strongly Recommended
Scope MAAB

MATLAB All

Version

Prerequisites |[db_0126: Guidelines for defining events

The following rules apply to event broadcasts in Stateflow:

® Directed event broadcasts are the only type of event broadcasts allowed.

® The send syntax or qualified event names are used to direct the event to a particular
state.

® Multiple send statements should be used to direct an event to more than one state.

Description

Correct: Example using qualified event names:

© Copyright 2013 JMAAB. All rights reserved. 182

Incorrect: Use of a non-directed event

¢ Parallel_1/ @

P A1] [Input = 10] P A 2/

P_B_1/ | P_B_2

Last Change V2.2

5.10. Functions within Stateflow

5.10.1. na_0041: Selection of function type

ID: Title na_0041: Selection of function type
Priority Recommended

Scope MAAB

MAT.LAB 2010b and later

Version

Prerequisites

The type of functions to be used should be selected depending on the required
processing.
® Graphical functions
» If / then / else logic

Description

© Copyright 2013 JMAAB. All rights reserved. 183

® Simulink functions
» Transfer functions
> Integrators
» Table look-ups

® MATLAB functions
» Complex equations
» If/then/ else logic

Stateflow supports the following three types of functions:
® Graphical functions

Notes ® Simulink functions
® MATLAB functions

Last Change |V3.0

5.10.2. na_0042: Location of functions

ID: Title na_0042: Location of functions
Priority Recommended

Scope MAAB

MAT.LAB 2010b and later

Version

Prerequisites

When deciding whether to embed Simulink functions inside a Stateflow chart, the
following conditions make embedding the preferred option. If the Simulink functions:
® Use only local Chart data

or
® Use a mixture of local Chart data and inputs from Simulink
or
® Are called from multiple locations within the chart
or

® Are not called every time step

o Incorrect
Description

Simulink Function y=loookup1D(x)

a= in * Param;

out=loookup1D(a);
double double

1-D Lookup Table

correct

© Copyright 2013 JMAAB. All rights reserved. 184

‘[Simulink Function y=loookup1D(x)
s1 N
en:
% _______________
du: f
[—
% 777777777777777
W, double double
l [in2] I [out>10]
X Yy
s2 :) 1-D Lookup Table
a= in * Param;
out=loookup1D(a);
}
A

Last Change V3.0

5.10.3. na_0039: Use of Simulink in Stateflow charts

ID: Title na_0039: Use of Simulink in Stateflow charts
Priority Recommended

Scope MAAB

MAT.LAB 2010b and later

Version

Prerequisites

The use of Stateflow charts is prohibited in Simulink functions that are included in
Stateflow charts.

Incorrect:
Description 4 B pootchart

4 ;-}I SimulinkFunctionInside5tateflow
T ChartinsideSimulinkFen

Last Change V3.0

5.10.4. db_0127: MATLAB commands in Stateflow

ID: Title db_0127: MATLAB commands in Stateflow
Priority Mandatory

Scope MAAB

MAT_LAB All

Version

Prerequisites

Do not use the .ml syntax in Stateflow charts.

Individual companies should decide on the use of MATLAB functions.

Description If they are permitted, then MATLAB command should only be accessed through the
MATLAB function .

Correct:

© Copyright 2013 JMAAB. All rights reserved. 185

XY Trac/
du:
[xForce yForce] = calcWheel(WhellTgTot,wheelAng);

el
[xF yF] = calcWhell(WheelTq,wheelAng)
Incorrect:
XYTrac/
du:

xForce = WheelTqTot * ml.cos(wheelAng);
yForce = WheelTqTot * ml.sin(wheelAng);

Code generation supports a limited subset of the MATLAB functions.
For a complete list of the support function, see the "MathWorks®" documentation.
Corresponding functions are described in the following two places.

- Functions Supported for Code Generation — Alphabetical List
(Functions Supported for Code Generation — Alphabetical List)

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-

Notes generation-alphabetical-list.nhtml

- Functions Supported for Code Generation — Categorical List
(Functions Supported for Code Generation — Categorical List)

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-

generation--categorical-list.html

Last Change V2.2

© Copyright 2013 JMAAB. All rights reserved. 186

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--categorical-list.html

6. Miscellaneous: Variants, enumerated type, MATLAB functions

6.1. Variant Subsystem

6.1.1. na_0037: Use of single variable variant conditionals

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisite

Description

Notes

Related

na_0037: Use of single variable variant conditionals
Recommended
MAAB

ALL

Variant condition equations must be composed from a compound condition formed from a
single variable or a single condition formed from multiple variables.
The provided variant is the exception to the second regulation.

Correct: Various variables (INLINE/FCNCTION that has one more condition per line)
Variant choices (list of child subsystems)

Il/ Mame {read-only) Variant object Condition {read-only)

— |Default_Fofa Defaultvar (INLINE==0) && (FUNC==0)
i Function_FofA FunctionVar FUNC==

E In_Line_FofA InLineVar IMLIMNE ==

Correct: A compound condition formed from a single variable

Variant choices (list of child subsystems)

\1‘ Name (read-only) Variant object Condition (read-only)

—57 |AutoTrans autoTrans (transType == 3) || (transType == 4) || (transType == 5)

Default_4speed defaultTrans (transType ~= 3) && (transType ~= 4) && (transType ~= 5) && (transType ~=0)
['s]| |ManualTrans manualTrans (transType == 0)

B

Incorrect: Compound condition formed from various variables

Variant choices (list of child subsystems)

IEI Name (read-only) | Variant object Condition (read-onlv)

— |AutoTrans incorrect_1 (INLINE==0) && (transType == 3)

l_l Default_sspeed incorrectDefault | ({(INLINE==0) && (transType ==3))==0) && (FUNC == 0) && (transType ~=2)
@I ManualTrans incorrect_2 (FUNC == 1) || (transType == 2)

The usage of enumerated type variables is recommended in a condition equation. This
example used numerical values in the screenshot to increase the readability.

Last Change (V3.0

6.1.2. na_0020: Number of inputs to variant subsystems

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite

Description

na_0020: Number of inputs to variant subsystems
Mandatory
MAAB

R2013b and earlier

db_0081: Unconnected signals, block inputs and block outputs

In Simulink, the same number needs to be inputted into Model Variants and Variant
Subsystem that will be used in the variant system. However, this does not necessary mean
that the variant subsytem will use all the input. Please connect the unused input with
Terminator blocks to conduct termination processing.

© Copyright 2013 JMAAB. All rights reserved. 187

Notes

See Also
Last Change

Model Variants: Includes a model into another model as a block.
Variant Subsytem: Represents subsytem that has several subsystems.

A new function was added by R2014a.
Even if the number of the ports is different, it is available.

V4.0

6.1.3. na_0036: Default variant

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite

Description

Notes

Last Change

na_0036: Default variant
Recommended
NAMAAB

ALL

na_0037: Use of single variable variant conditionals

Model Variants and Variant Subsytem are all constructed so that one subsytem will

always be selected. This can be achieved with one of the following methods.

® A default variant is used.

® The condition will be set so that all values that conditional variables may take will be
covered. For example, a condition will be set for a situation in which the boolean-type
variable's value is true and when it is false.

Correct:
Variant choices (list of child subsystems)

j Name (read-only] | Variant obiect Condition (read-onlv)

— Default_FofA defaultVar (FUNC ~= 1) &8& (FUNC ~= 2)
Function_FofA functionvar FUNC ==1

@I In_Line_FofA inLine\Var FUNC ==

Correct: Let's assume that FUNC and INLINE are boolean types.
Variant choices (list of child subsystems)

l;l Mame (read-only) Variant obiect Condition {read-only)

— |Default_Fofa Defaultyar (IMLINE==0) && (FUNC==0)
i Function_FofA FunctionVar FUMC==

E In_Line_FofA InLineVar IMLIME ==

Incorrect: If FUNC is neither 1 nor 2, an active subsystem will not exist.

Variant choices (list of child subsystems)

j Name (read-only) Variant object Condition (read-only)
= Function_FaofA functionVar FUNC ==1
In_Line_FofA inLineVar FUNC == 2

V3.0

6.2. Enumerated type data

6.2.1. na_0033: Enumerated Types Usage

ID: Title
Priority

na_0033: Enumerated Types Usage
Recommended

© Copyright 2013 JMAAB. All rights reserved. 188

Scope

MATLAB
Version

Prerequisite

Description

Notes
See Also

Last Change

MAAB
R2010b and later

na_0002: Basic logical operation and the appropriate implementation of arithmetic
operations

Signals and parameters serve as a finite set of integer values. If the values of these
sequences correspond to a group formed from items with names, use the data of an
enumerate type.

Example: Usage example of red, yellow, and blue in a traffic light.

Correct:
Display1
BasicCol
BasicColors.Red asicColors » |
Enumerated double | Red
Constant o v
n
double Yell double
> >D
N2 ~double Blue Outt
> a
In3
> * o
BasicColors
Incorrect:
Display1
uint8
Red » |
Constant1 D double 0
1 >
Int double 1 double
C2) » a
2 Jouble 2 Outl1
> a
In3
..

BasicColors

Red is used as a regular unit 8 value.

4 byte will be used for the enumerate type in the C-code in the standard regulation.

V3.0

6.2.2. na_0031: Definition of default enumerated value

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite

Description

na_0031: Definition of default enumerated value
Recommended
MAAB

R2010b and later

Default value of an enumerated type (getDefaultValue) always needs to be stipulated
explicitly.

Correct:
classdef (Enumeration) BasicColors < Simulink. IntEnumType

© Copyright 2013 JMAAB. All rights reserved. 189

enumeration
Red (0)
Yellow(1)
Blue (2)
end

methods (Static = true)
function retVal = getDefaultValue()
retVal = BasicColors.Red;
end
end

end

Incorrect:
classdef (Enumeration) BasicColors_Violation < Simulink. IntEnumType
enumeration
Red (0)
Yellow(1)
Blue (2)
end
end

When the default value is not stipulated when using getDefaultValu, the text listed in the
enumeration will be used as the initial value.
For example, if "Yellow" is written first like in the below example, "Yellow" will be used as
the initial value.
enumeration
Notes Yel low(1)
Red (0)
Blue (2)
end

Last Change |V3.0

© Copyright 2013 JMAAB. All rights reserved. 190

6.3. MATLAB functions

6.3.1. na_0018: Number of nested if/else and case statement

ID: Title na_0018: Number of nested if/else and case statement
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisite

The number of nests in if/else and case statements need to be restricted.

Description Example: Say, the number hierarchies was up to 3 hierarchy.

See Also Orion_jr_0002: The number of if/else and case statements block nests
Last Change V3.0

6.3.2. na_0025: MATLAB function header

ID: Title na_0025: MATLAB function header
Priority Strongly Recommended

Scope MAAB

MAT.LAB ALL

Version

Prerequisite

MATLAB functions need to have a header that explains such functions.
For example, the following types of information will be entered in a header.
Iltem example:

-Function name

-Explanation of the function

-Prerequisite and restriction

-Modified points from the previous version

-List of input and output

Implementation example:
%% Fonction Name: NA 0025 Example Header

%

% Description: An example of a header file
Description N

% A=zsumptions: Hone

%

% Inputs

% List of input arguments

%

% Outputs

% Li=t of output arguments

%

% EZRevision: 3.0%

% Shuthor: MALRS

% EDate: July 24,2012%

o

o

© Copyright 2013 JMAAB. All rights reserved. 191

See Also
Last Change

Orion_jh_0073: eML header version
V3.0

6.3.3. na_0034: MATLAB Function block input/output settings

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite
Description

Notes
See Also
Last Change

na_0034: MATLAB Function block input/output settings
Strongly Recommended
NAMAAB

ALL

Itis required to explicitly stipulate the data type at the top of the model explorer or the
function for all input and output toward MATLAB function block

Orion_jh_0063: Input and output setting of eML block
V4.0

6.3.4. na_0024: Global variable

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite

Description

na_0024: Global variable
Strongly Recommended
MAAB

ALL

It is recommended to access the signal wire with common data between MATLAB

functions.

For example, if one side only merely consult the signal value, the connection is made by

using the signal line without using the data store memory.

In the following cases, it is possible to share the signal using a data store memory without

connecting via signal line.

® |tis required to share a specific signal, such as conducting writing updates toward the
same signals within various MATLAB functions.

Example:
In this example, the same data store memory (ErrorFlag_DataStore) is shared between
two different MATLAB functions.

function EngineFaultEvaluation (EngineData)

F¥codegen

global ErrorFlag DataStore
if (EngineData.RFM HIGH)

ErrorFlag DataStore = bitor(ErrorFlag DataStore, HIGHRPMFAULT) ;
end

if (EngineData.RPM LOW)
ErrorFlag DataStore = bitor(ErrorFlag DataStore, LOWRPMFAULT) ;

end

end

© Copyright 2013 JMAAB. All rights reserved. 192

function WheelFaultEvaluation (WheelData)
f#codegen

global ErrorFlag DataStore
if (WheelData.S5lipHigh)

ErrorFlag DataStore = bitor(ErrorFlag DataStore, WHEELSLIF) ;
end
if (WheelData.S5lipHigh)
ErrorFlag DataStore = bitor(ErrorFlag DataStore, LOWRFMFAULT) ;
end
end
See Also Orion_ek_0003: Global variable

Last Change |V4.0

6.3.5. na_0022: Recommended patterns for Switch / Case statements

ID: Title na_0022: Recommended patterns for Switch / Case statements
Priority Mandatory

Scope MAAB

MATLAB ALL

Version

Prerequisite

Switch / Case statements must use constant values for the “Case” arguments. Input

variables cannot be used in the “Case” arguments

Correct:
function outVar = HA 0022 Pass(SwitchVar)
f¥codegen B B
switch SwitchWVar
case Case_1 Parameter % Parameter
outVar = 0;
Descﬂpﬁon case NA 0022.Case_ 2 % Enumerated Data type
outVar = 1;
case 3 % Hard Code Value
outVar = 2;
otherwise
outWVar = 10;
end
end

Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 193

function outWar = HA 0022 Fail (Case 1,Case 2,Case 3,5witchVar)
t¥codegen
switch SwitchVar
case Case 1
outvVar = 1;
case Case 2
outVar = 2;
case Case_3
outVar = 3;
otherwise
outVar = 10;
end
end

See Also Orion_jh_0026: Switch/Case statement
Last Change (V3.0

6.3.6. na_0016: Source lines of MATLAB Functions

ID: Title na_0016: Source lines of MATLAB Functions
Priority Strongly Recommended

Scope MAAB

MAT.LAB ALL

Version

Prerequisite

The length of MATLAB functions should be limited, with a recommended limit of 60 lines
of code. This restriction applies to MATLAB Functions that reside in the Simulink block
diagram and external MATLAB files with a .m extension.

Description
If sub-functions are used, they may use additional lines of code. Also limit the length of
sub-functions to 60 lines of code.

See Also Orion_im_0008: Source line of eML

Last Change |V3.0

6.3.7. na_0017: Number of called function levels

ID: Title na_0017: Number of called function levels
Priority Strongly Recommended

Scope MAAB

MATLAB ALL

Version

Prerequisite

The number of levels of sub-functions should be limited, typically to 3 levels. MATLAB

function blocks that resides at the Simulink block diagram level counts as the first level,

. unless it is simply a wrapper for an external MATLAB file with a .m extension.

Description
This includes functions that are defined within the MATLAB block and those in separate
.m files.

Standard utility functions, such as built in functions like sgrt or log, are not included in the
Notes number of levels. Likewise, commonly used custom utility functions can be excluded from
the number of levels.

© Copyright 2013 JMAAB. All rights reserved. 194

See Also
Last Change

Orion_im_0009: Hierarchy number of function to be called out
V3.0

6.3.8. na_0021: Strings

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite

Description

Notes

See Also
Last Change

na_0021: Strings
Strongly Recommended
MAAB

ALL

The use of strings is not recommended. MATLAB Functions store strings as character
arrays. The arrays cannot be resized to accommodate a string value of different length,
due to lack of dynamic memory allocation. Stings are not a supported data type in
Simulink, so MATLAB Function blocks cannot pass the string data outside the block.

For example, the following code will produce an error:

name = ‘rate_error’; %this creates a 1 x 10 character array
name = x_rate_error’; %this causes an error because the array size is now 1 x 12, not 1
x 10

If the string is being used for switch / case behavior, consider using enumerated data
types.
Orion_jh_0024: Character string

V3.0

© Copyright 2013 JMAAB. All rights reserved. 195

7. Basis, list of rule parameters

7.1. Basis

7.1.1. Basis category

For the basis, one or more reasons from the following reasons that the guideline recommends will be
selected.

1. Readability
e Improvement of graphical understandability
e Improvement of readability of functional analysis.
e Prevention of connection mistake
e Comments and so on

2. Simulation and verification
e System to enable simulation
e Easy testing

3. Code generation
e Improvement of efficiency of generation code.(ROM,RAM efficiency)
e Securement of robustness of a generation code

4. Others
e Maintainability and operatability
e Template
¢ Not correspond to basis described above (Basis is unclear)

7.1.2. List of rule basis

Simulation and Effective/efficient
Rule ID | Readability | verification are to built-in code Others
effective generation

ar_0001 o
ar_0002 A:In the past
jc_0241 o o

jc_0242
jc_0201 o
jc_ 0211
jc_0222 o
jc_0232 o
jc_0231
jc_0243
jc_0244
jc_0245
jc_0246
jc_0247
na_ 0035
jc_0251 o
na_0014 A:In the past

0|0 |0 |0

oO|lo0o]J]O|O|O]|O|O

na_0006 0 o
na_0007 o
db_0143
db_0144
na_ 0004
db_0043

© Copyright 2013 JMAAB. All rights reserved. 196

OO |O|O

db_0042

jm_0002

db_0142

jc_0061

db_0140

db_0032

db_0141

jc_0110

jc_0111

jc_0653

jc 0171

jc_0602

db_0146

jc_0281

jc_0603

olo|jo|jO0o|O|O|O|O|O|JO|O|O|O|O]|O|O

jc_0604

na 0010 o

na_0008

na_0009

na_0005

jc_0082

jc_0083

db_0097 o

db_0081 o

na_0003 o

na_0002 o

jm_0001

hd_0001

na 0011 o

jc_ 0141 o

jc_0121

jc_0610

jc_0611

jc_0131

jc_0161 o o

jc_0621

jc_0011

jc_0629

jc_0622 o

jc_0626

jc_0627 o

ic_0628 o

ic_0650

jc_0630 o

jc_0631

jc_0632 o o

jc_0625

ic_0640 o

db_0112

© Copyright 2013 JMAAB. All rights reserved. 197

db 0110 o
jc_0645 o
Improvement of
jc_0641 maintainability and
operatability
jc_0642 o
jc_0643 o
Improvement of
jc_0644 maintainability and
operatability
db_0114 Template
db_0115 Template
db_0116 Template
db_0117 Template
Not correspond to
na_0012 basis described
above
Not correspond to
na_0028 basis described
above
jc_0658 o o o
jc_0623 o
jc_0624 o o
jc_0651 o o
jc_0652 o
jc_0659 o o
jc_0656 o
jc_0657 o o
db 0123 o
Improvement of
jc_0700 maintainability and
operatability
db 0122 o
Improvement of
db_0125 maintainability and
operatability
Improvement of
jc_0701 maintainability and
operatability
jc_0702 o
jm_0011 o
db_0129 o
db_0137 o o
jc_ 0711 o o
jc_0531 o o o
jc_0712 o o o
na_ 0038 o
na_0040 o
jc_0720 o
jc_ 0721 el o

© Copyright 2013 JMAAB. All rights reserved.

Improvement of
jc_0722 maintainability and
operatability

jc_0723 o o

jc_0730 o o

jc_0731

jc_0732

jc_0733

jc_0734

jc_0740

OlO0O|O|O|O|O

jc_0501

jc_0735 o

jc_0736

jc_0737

jc_ 0738

jc_0739

jc_0741

jc_0742

jc_0770

jc_ 0771

jc_0772

jc_0752

jc_0743

OlO0O|O[O|O[O|O|O|O]|O|O|O

jc_0750

jc_0751 o o

jc_0754

o |O

jc_0753

db_0151

na 0013 o

jc_0481 o

na_ 0001 o o

jc_0655

O

jc_0451 0o o

jc_0755

jc_0756

jc_0757

jc_0491

jc_0521

jc_0760

jc_0762

jc_0763

jc_0761

oOlo|O|j]O|O]|JO|O|O|O|O

db_0132

db_0134 Template

db_0159 Template

db_0135 Template

jc_0773

jc_ 0774

jc_0511 o A

© Copyright 2013 JMAAB. All rights reserved. 199

jc_0775

jc_0776

db_0126

jc_0780

olp>|o|o
o |>

jc_0781

jm_0012

na_0041

na 0042

na_0039

OO |O|O

db_0127

na_ 0037

O

na_0020

na 0036

na_0033

na 0031

na 0018

na_0025

O|lO|]O|O|O
o

na 0034

Not correspond to
basis described
above

na_0024

na 0022

na 0016

na 0017

na 0021

7.2. Selectable parameters of each rule

7.2.1. Interpretation

In several rules, it is clearly described that is is selectable. However not all rules include that description.
Regarding the others, there is no need to accord completely to description. This guideline provides
templates for practical use of rules in projects. Numeric values and block types described in guidelines are
not absolute. They need adaptation to characteristics of each project. In this section, least choices which
must be decided based on characteristics of each project are described. As other elements, development
processes of each project, conditions of controlling object, average of skill levels of relating engineers
should be taken into comprehensive consideration. Appropriate operation based on understanding of what

guidelines really mean is expected.

7.2.2. List of rule parameters
This list does not completely include all selectable parameters.

Rule ID | Parameters
Extensions which are subject to this rule is decided.
In case limite to MATLAB related files, following extensions are
subject to this rule. {m,p,mdl,slx.fig,c,h,mexw64,mexw32}

ar_0001)

- Current version does not use dll.

In case all files are subject to this rule, kinds of extensions should not
be limited.

ar_0002

jc_0241 | Total number of characters

© Copyright 2013 JMAAB. All rights reserved. 200

jc_0242 | Total number of characters
jc_0201
jc_ 0211
jc_0222
jc_0232
. Kinds of subsystems
je_0231 Expansion to ¥unction declaration.
jc_0243 | Total number of characters
jc_0244 | Total number of characters
jc_0245 | Total number of characters
jc_0246 | Total number of characters
jc_0247 | Total number of characters
na_0035 | All of naming conventions
jc_0251
na_0014 Places in which gsing local language is inhibited.
Processes adoption.
na_0006
na_0007
® The list of blocks which are allowed to use on all layers.
db 0143 | ® The list of blocks which is used depends on layers.
® Definitions of layers
db_0144
na_0004 | The type of options and setting values which should be selected.
Kind of the font, size and style.
Simulink: Standard setting should be decided for each of block, line
db_0043 | and annotation.
Stateflow: Standard setting should be decided for each of state label
and transition label.
db_0042
. Blocks which are subject to this rule. And their sizes. Regarding block
Jm_0002 sizes, tolerances should be decided.
db_0142
For each process subject to this rule, following lists should be
decided.
. ® The list of block types whose names are always displayed
Je_0061 ® The list of block types whose names are always undisplayed.
® The list of block types whose names are selectable to be
displayed or undisplayed
For each process subject to this rule, following lists should be
decided.
db_0140 | ® Block types subject to this rule, options to be displayed and
conditions to display options.
® How to display and displaying characters.
db_0032
db_ 0141
jc_0110 | Block types which are allowed to be rotated.
jc 0111
jc_0653
jc 0171
jc_0602
db_0146 | Regarding detailed position of blocks, it is selected from the following

© Copyright 2013 JMAAB. All rights reserved. 201

patterns.

® Anywhere of top portion

® Rightside of top portion

® Center of top portion

® |eftside of top portion

In case model information is described according to jc_0603, relative
position of conditional input blocks and them should be clarified.

Positions of following blocks also should be decided.
® For Each
® For Iterator

jc_0281 | Which of block name or subsystem name inherit names of blocks

Decide the kind of the block which is used for model description.
® Annotation

® Modellnfo

® Both can be used

Detail of position should be decided.
Examples:

The most upper left

Anywhere of top portion
Right-side of the whole

Center of the whole

Left-side of the whole

jc_0603
In case db_0146 is also applied, relative position of conditional input blocks
and model informations should be decided.

Examples:

® Horizontally same position

® The upper position than conditional input blocks

The keyword string should be decided.

51 -

® Prerequisite
® Outline

® [Function

jc_0604 | Blocks which are allowed to set block shading.

na 0010

na_0008

na_0009

na_0005 | Which of jc_0082 or jc_0083 is adopted.

jc_0082

jc_0083

db_0097

db 0081 How to enable distinguishment of automatically added blocks and
- intentionally added ones should be decided

na_0003

Block types are registered to following lists..
na_0002 | ® List of block types that are awaiting logical values.
® List of block types that are awaiting numerical values.

jm_0001 | Prohibited block types

hd_0001 | Prohibited block types

© Copyright 2013 JMAAB. All rights reserved. 202

na 0011

jc_0141

jc_0121

jc_0610

jc_0611

jc_0131

jc_0161

jc_0621

Which of the Logical Operator block icon shape "square” or "characteristics"
is adopted.

jc_0011

jc_0629

jc_0622

ic_0626

jc_0627

jc_0628

jc_0650

jc_0630

jc_0631

jc_0632

jc_0625

Unified rule for initial value is decided.

jc_0640

db_0112

Which of 0 based indexing or 1 based indexing is adopted.

db_0110

jc_0645

jc_0641

jc_0642

jc_0643

jc_0644

db_0114

db_0115

db_0116

db_0117

na 0012

na_0028

The nest level of switch blocks.
Total nest level?

jc_0658

jc_0623

jc_0624

jc_0651

Kinds of blocks that are used for Cast.
How to describe Cast.

jc_0652

jc_0659

ic_0656

jc_0657

Whether comments are described or not.
In case comments are described, contents and positions should be
decided.

db_0123

jc_0700

db_0122

© Copyright 2013 JMAAB. All rights reserved. 203

db_0125

jc_0701

jc_0702

jm_0011

db_0129

db_0137

jc_0711

jc_0531

jc_ 0712

na 0038

The maximum number of layers within a single viewer.

na 0040

The maximum number of layers within a single viewer.

jc_0720

jc_0721

jic_0722

jc_0723

jc_0730

jc_0731

jc_0732

jc_ 0733

jc_0734

jc_0740

jc_0501

jc_0735

jc_0736

jc_0737

jc_0738

jc_0739

jc_0741

jc_0742

The number of conditions written in a line.(An example number is 3)
In case of multiple lines, the position of operators. (They are written on start
of lines or end of lines.)

jc_0770

Positions of conditions and actions in flow chart.
® Near the starting point of transitions
® Near the center of transitions

jc_0771

It should be decided that comments are written above lines or written
below lines.

jc_0772

jc_0752

jc_0743

jc_0750

jc_0751

jc_0754

jc_0753

db_0151

na_0013

jc_0481

na_ 0001

jc_0655

Which of "~" or "I" is used as negation.
"I" is recommended.

© Copyright 2013 JMAAB. All rights reserved.

204

jc_0451

jc_0755

jc_0756

jc_0757

jc_0491

jc_0521

jc_0760

ic_0762

jc 0763

jc_0761

db_0132

db_0134

db_0159

db_0135

jc_0773

jc_0774

jc_0511

jc_0775

jc_0776

db_0126

jc_0780

jc_0781

jm_0012

na 0041

na_0042

na_ 0039

db_0127

na_ 0037

na_ 0020

na_0036

na 0033

na 0031

na 0018

na_ 0025

na 0034

na_ 0024

na 0022

na 0016

Number of lines in MATLAB function is 60.
It should be decided whether comments are also counted or only execution
lines are counted.

na 0017

Number of maximum layers.

na_0021

Common

® | etthe masked inside be targeted search?
® s the kind of function setup by which atomic was carried out limited?
® Please determine the subsystem classified into annotation, and the kind of S-function.
For example, is the following kind classified into annotation?
» Do an input and the block without an output port correspond?
» What kind of block type name corresponds?

© Copyright 2013 JMAAB. All rights reserved. 205

» What kind of mask type name is applicable striped soot?

© Copyright 2013 JMAAB. All rights reserved. 206

8. Terminology/supplementary explanation

JMAAB's own supplementary information not published in MAAB guideline (English) will be published
here. This resource material includes content that requires supplement particular to Japan. Although the
Help section in MATLAB has everything in the English translation, the Japanese Help section does not
have all. Therefore, there are various sections that need to be explained just for Japan. This chapter
added its own supplementary explanation on items that should be originally be read minutely on Help
Definitions of terminologies used in the guideline and the commentary on the functions

8.1. Commentary on Simulink terminologies

8.1.1. Definition of basic blocks

In this guideline, the built-in blocks of standard Simulink library are defined as “basic blocks”
Below are the examples of basic blocks.

> XD B 3 (Y -

Int Out1 Ground Terminator ot ¢

Scope

S >~
I N A S P T L5 S M= NN

z z—1

: xr—=—
Saturation! Unit Delay Delay Discrete-Time "~ gyich
Integrator
¥ > b el Ymob y#d
Gain Product Relational Logical Saturation

Operator Operator

Related ID:db_0110. db_0143,jc_0641,db_0146,jc_0281

8.1.2. Definition of port blocks.

When the term "port block" is used in this guideline, it is referring to the input and output port of the
subsystem.

Ports used for the conditional system are referred to as "condition input blocks". The block groups that
include port block and condition input blocks are referred to as a "port block group"”.

Block type

Port block group | Port block Inport,Outport
Condition input block Enable

For Iterator

Action Port

Switch Case Action
Trigger

While Iterator

Related ID:na_0005,jc_0082,jc_0083,

8.1.3. Conditional control flow

Flow listed using conditional subsystem that includes condition input block is referred to as “conditional
control flow”

An example of a conditional subsystem

© Copyright 2013 JMAAB. All rights reserved. 207

N [V
I Action
) In1 Outl D) In1 Out1 D
Enabled Subsystem If Action Subsystem
\V4 \V4
£ function()
) In1 Outl D) In1 Outl D
Triggered Subsystem Function—Call Subsystem

An example of conditional control flow

action

case [11]:
uint8 ul case [231 lz_al(_:.’i!ion i
In1 default: fct?on double In1case: é)’uﬂ double
Switch Case E In2

Switch Case Action Subsystgm

N N
>

double case:{} | double double
In1 Outl »| Merge

In3
Switch Case Action Subsystem1
\ 4
double |, default; {} &,_' Merge
CF)——»intOutt

In4
Switch Case Action Subsystem2

Out1

Conditional control flow indicates flow listed using a conditional subsystem. However, it does not indicate
a function in which only one subsystem operates. A system that conducts calculation for several times for
for iterator and while iterator also exist. The flow of original block in which the signal is input into a
conditional subsystem and the conditional subsystem and how it's used form a pair, known as a
“conditional control flow”.

Related ID:na_0012,na_0028,jc_0658,jc_0656,jc_0657

8.1.4. Blocks with State Variables

Block with state variables is a block that keeps values of the past in memory.

The blocks are stored under <Simulink><Discrete>.

Blocks with state variables have initial value(s). Blocks with state variables are blocks in which initial
values setting is enabled. Also, most of blocks with state variables have the State Attributes property
within the block properties.

Example of Block with State Attributes Property

© Copyright 2013 JMAAB. All rights reserved. 208

2 R
"% Function Block Parameters: Unit Delay lﬂ

UnitDelay

Sample and hold with one sample period delay.

hMain State Attributes

State name:
State name must resolve to Simulink signal object
l||Package: |——— Mone ——- v || Refresh |
Code generation storaze class: Auto v

\._)' [OK] [Cancel] [Help] Apply

= B S .

There are some blocks without state attributes, for example, Tapped Delay.
£ 7] 2

*, Function Block Parameters: Tapped Delay A

Tapped Delay Line (mask) {link)
Delay a signal N sample periods and output all the delay versions.
Parameters
Ihitial condition:
00|
Sample time:

-1

==

Number of delays: i
4

Order output vector starting with: [Oldest V]

[7] Include current input in output vector

\)’ OK][Cancel][Help] Apply

= E——— - S

Note that a conditional control flow may have state variables depending on the flow’s structure pattern.
Related ID:jc_0658,jc_0625,jc_0640

8.1.5. Branch Syntax with State Variables

Switch and Conditional Control Flow behave differently when they have a state variable.

Depending on the configuration setting, when any state variable exists, the Switch block generally
executes subsystem A if the condition of control port is satisfied, and if not, it executes only subsystem B
without calculating subsystem A.

© Copyright 2013 JMAAB. Al rights reserved. 209

In1

Outl

B

B

Switch

However, when the subsystem A contains a state variable, calculation for the state variable within the
subsystem A is processed even if the conditions of control port do not hold.

On the other hand, in the Conditional control flow, the subsystem A is calculated if the condition holds,
and if not, the subsystem B is calculated instead of subsystem A, regardless of existence of state

variables in subsystem

A.

CO—

In1

Merge |——pp|

Yyv

Outl

Merge

Reset action in recalculation can be specified by Action Port setting.
The behaviors of subsystem A using Switch and Conditional control flow are listed in the following tables:

Behavior of subsystem A
Control port State variables (in Switch Conditional
condition subsystem A) control flow
Hold No Executed Executed
Yes
Not hold No Not executed Not executed
Yes Minimally-processed
*Executed calculations related to the
state variables

Initialization timing of subsystem A

ActionPort | Initialize
Switch — First time only
Conditional control flow Hold First time only

Reset At returned by condition

© Copyright 2013 JMAAB. All rights reserved.

210

Understand the behaviors above to determine the more suitable structure to use, Switch block or
conditional control flow, according on the intended use.

Related ID:na_0012,na_0028,jc_0658,jc_0656,jc_0657,db_0114,db_0115

8.1.6. The definition of subsystem

Subsystem is used for compiling various blocks and subsystems. However, they can also be used for
other purposes. Below, usage methods that are not functional subsystems will be listed.
® Open function of the subsystem will be used.
» This is used with the purpose of running several tools or displaying an explanatory text
separate to the model.
® Mask display of the subsystem will be used.
» This describe the outline or display fixed form documents, such as "classified"
® Turning block composition into groups using a subsystem bracket
» From R2012b onward, subsystems can be place in the back of the block. Using this, the
foreground of subsystem can be set to a slightly lighter color, such as grey. A subsystem can
be used for compiling several blocks that do not require to be turned into a subsystem into a
group.
When taking usage methods other than the above usage of compiling functions, generally such
subsystem is set to exclude code generation as targets with blocks that do not have any input or output.
Furthermore, if possible, these subsystems should not display the block name or use a determined block
name if it is displayed, making it clear that it is not a general subsystem. When the expression
"subsystem” is used in this guideline, it covers subsystems that "use functions separately”, which always
cover code generation. Categorically speaking, other subsystems have rules on the annotation side
applied.
Furthermore, there are also subsystems that have had its setting changed to a mask subsystem (a
subsystem that was simply set to NoReadOrWrite), in which a general user cannot see the content. This
change could be made by the upper level user certified by the organization mask the subsystem after
designing or reviewing it. This subsystem is excluded from the guideline's inspection target. A list should
be created on exclusion targets and should be managed within the project.
Related ID:jc_0201,jc_0231,jc_0243,db_0144,jc_0111,jc 0653

8.1.7. The definition of a dictionary

The actual state of the title data dictionary differs for each project. MathWorks provide various methods,
such as data management method that uses m-file and data management method that uses a model
explorer. For example, MWJ proposes a tool that can manage data with a description method that follows
data dictionary format stipulated by JMAAB (provided at MATLAB CENTRAL "SDOxXIsIF: Excel Interface
API for Simulink Data Object) Other than this, there are also companies that use DCM file based on
ASAM as a data dictionary. Of course, it is possible to make a company's own format. As such, even the
term "data dictionary" can be perceived differently depending on the project.

When the term “data dictionary” is used in this document, it refers to the list of signals and parameters
managed by the various methods mentioned above.
Related ID:jc_0644,na_0035,jc_0251

8.1.8. Signal

The RAM value that appears in the data dictionary is referred to as a signal.

This refers to the variable used in the code generation that uses Simulink or mpt object. It is also referred
to as signal object at times.

When the label name is added to the signal line before and after the block, and this is used for code
generation, it is then referred as a signal.

In cases where only the label name is stipulated without having any Simulink or mpt object, it is a name
that has an annotative nuance or was given to differentiate signals to use bus. Therefore, strictly-speaking,
signals that do not appear in the data dictionary are not covered by he guideline.

Related ID:jc_0222,jc_0245,na_0035,jc_0251

© Copyright 2013 JMAAB. All rights reserved. 211

8.1.9. Parameter

It refers to a RAM or ROM value that appears in a data dictionary with a fixed number.

Parameters that have values that are used for code generation that use Simulink or mpt object are either
variables or constants. It is also referred to as a parameter object.

Parameters do not become altered during a single simulation. However, a variable-type parameter that
has been stipulated as an adaptable RAM can have its values altered while Simulink is executed or after
being implemented by using an external tool. This is called a relevant constant and can be altered during
operation.

Parameters that do not appear in data dictionary are usually not treated as the target in this guideline. The
parameters that become targets are few in number, such as the switching constant.

Related ID:jc_0232,jc_0246,na_0035,jc_0251

8.1.10. Signal label and signal name

Signal label is used to make the functions of the Simulink block diagram model easier to understand.
Furthermore, it can also be used to manage the variable names used in simulation and code generation.
Signal name is inputted only once (at the time the signal is emitted). When displaying the inputted signal
name at a different location of the model, it will be displayed as a propagation signal if the signal has not
been converted functionally (Signals can be functionally converted by having it go through an integrator.
Signals will not be converted functionally even if they go through a subsystem import that had become a
nest). If the signal with a name given was functionally converted, have a new name be related to it.
Unless not specified clearly elsewhere, the “signal” guidelines can be applied to various types of signals.
For details of the representation of Simulink model signal, please refer to "How to Handle Signals”, a
Simulink Documentation

Related ID:jc_0222,jc_0245,na_0035,jc_0251

8.1.11. Control Characters

Control Characters are special characters used to control display and printer, including carriage return
(CR), escape (ESC), tab (TAB) and so on. They are not be displayed on the screen.

See Also
http://e-words.jp/Ww/E588B6ESBEA1E69687E5AD97.html
http://www.c-tipsref.com/words/control _character.html
Related ID: jc_0222,jc_0232

8.1.12. Commentary vector signals/path signal

Vector
Individual scholar signals that compose a vector need to have common functions, data type, and
units.
The most typical examples of a vector signal include sensor data grouped to a sequence with a location
index and actuator data.
Bus
As mentioned previously, signals that do not fulfill the conditions as a vector can only be grouped as a bus
signal.
Bus Selector block is only used with bus signal input. Do not use it to extract scholar signal from a vector
signal.

Example

The following is an example of a vector signal:
Types of vector Size
Row vector [1n]
Column vector [n 1]

© Copyright 2013 JMAAB. All rights reserved. 212

http://e-words.jp/w/E588B6E5BEA1E69687E5AD97.html
http://www.c-tipsref.com/words/control_character.html

Types of vector Size

Wheel speed subsystem [1 wheel number]
Cylinder vector [1 cylinder number]
Location vector based on a 2-dimensional coordination [12]

Location vector based on a 3-dimensional coordination [13]

The following is an example of a bus signal:

Bus type Factor
Sensor bus Force vectors
Location

Wheel speed vector [Oy, O, O, O]

Acceleration

Pressure

Controller bus Sensor bus

Actuator bus

Serial data bus Circulating water temperature

Engine speed, front passenger seat door open

Related ID:na_0010,db_0117,jc_0222,jc_0245,db_0097,jc_0630,jc_0659

8.1.13. Boolean type and boolean value

Boolean type refers to a Boolean type variable, which is characteristic to MATLAB.

This document uses the term Boolean type to mean that it is a signal that cn be perceived as either true or
false. Within Simulink or in C programming language, there are times where these take a form of double,
uint8, or boolean, depending on the configuration or the setting of the block. However, Boolean type, per
semantics, refer to the calculation result of blocks that "deal with authenticity".

Boolean value displays true or false values.

Related ID:na_0002,jc_0141,jc_0655,jc_0757,na_0037

8.1.14. On enumerated types

"Enumerated type data" refers to data that is restricted to a determined numerical value.

The type of blocks that can be used in an enumerated type in Simulink is limited.

Description per types of blocks that can be appointed is in “Simulink composition that supports the
enumerated type”, under Help Simulink — Model — model composition — data type.

In order to use an enumerated type, it is necessary to define enumerate type using m file on MATLAB as
seen in the example below.

Example: BasicColors.m
In this example, the characters of Red, Yellow, and Blue (Green) can be used.
classdef(Enumeration) BasicColors < Simulink.IntEnumType

enumeration

Red(0)

Yellow(1)

Blue(2)

Green(2)

end

© Copyright 2013 JMAAB. All rights reserved. 213

methods (Static = true)
function retVal = getDefaultValue()
retVal = BasicColors. Blue;
end
function retVal = getDescription()
retVal = 'This defines an enumerated type for colors';
end
% function retVal = getHeaderFile()
% retVal = 'imported_enum_type.h’;

% end
function retVal = addClassNameToEnumNames()
retVal = true;

If it is set as % true, it will be shown as BasicColors_Red on C-code.
If % is not appointed or false is selected, it will be written as Red on C-code.

end
end
end
A method to customize the data types below will be provided here.
getDefaultValue Except for the first value on the allowed value list, default
enumerated value will be appointed.
getDescription An explanation on the data type of Simulink® Coder™
generation code will be provided here.
getHeaderFile It enables import of custom header file including the
enumerated type definition of Simulink Coder generation
code.
addClassNameToEnumNames | It avoids the competition of name with the identifier of
Simulink Coder, making it easier to read.

For example, if a Display block is used, the display of 0,1, 2 is usually used for constant. However, a
character can be displayed if an enumerated type is used.
® Description method that stipulates the constant for enumerated type in a Constant block.

BasicColl
BasicColors.Red asieolors > Red

Constant1 Display1

Simlink Coder can generate code by also using enumerated type.

In the default setting, the enumerated type data within generated code is stipulated within a header file
model_types.h generated for a model.

For example, the default code for BasicColors will be as follows:

#ifndef DEFINED_TYPEDEF_FOR_BasicColors_

#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
BasicColors_Red =0,
BasicColors_Yellow =1,
BasicColors_Blue = 2, [* Default value */
BasicColors_Green = 2
} BasicColors; /* This defines an enumerated type for colors */
#endif

You can choose either blue or green as the color for the signal. As shown in the example, the letters Blue
or Green can be set to the same value 2 for enumerated type.

If the example case is used in Simulink, a Green setting is interpreted as Blue.

If two letters are set for 1 constant in this way, the letters written in the m file takes precedence as with
setting the initial value.

© Copyright 2013 JMAAB. All rights reserved. 214

Blug

Display1

BasicColors.Green BasicColors > |
Constant1 double | Red
In1 Gouble Yellow double
» o
In2 double Blue
» o
In3
WK a

BasicColors

8.2. Stateflow terminology commentary

8.2.1. Operators available for Stateflow
Operators available for use with Stateflow

Outl

Operator | Description
a*b Multiplication
alb Division (Conditional use is available)
a%%b Reminder
a+b Addition
a-b Subtraction
a>>b Shift operand a right by b bits
a<<b Shift operand a left by b bits
Compare whether the 15t operand is greater than
a>b p
the 2" operand
Compare whether the 1st operand is smaller than
a<b p
the 2" operand
a>=b Compare whether the 15t operand is equal to or
- more than the 2" operand
_ Compare whether the 15t operand is less than or
a<=b ’
equal to the 2" operand
a== Compare whether the two operands are equal
a~= Compare whether the two operands are not equal
al=b Compare whether the two operands are not equal
a<>b Compare whether the two operands are not equal
Operator C language bit operation is available
HET OFF ON
alb Logical OR of a, b Bitwise OR of a, b
allb Logical OR of a, b Logical OR of a, b

a&b Logical AND of a, b Bitwise AND of a, b
a&&b Logical AND of a, b Logical AND of a, b
a™b b power of a Bitwise XOR of a, b
la Logical NOT of a Logical NOT of a

~a Logical NOT of a Two’s complement

© Copyright 2013 JMAAB. All rights reserved.

215

C chart supports the following unary actions

Operator | Description

a++ Increment a

a-- Decrement a

You can perform element-wise assignment operations on assignment operation vector and matrix
operands.

Assignment Equivalent expression
operation

a = expression

a += expression a= a + expression

a -= expression a= a - expression
a *= expression a= a * expression
a /= expression a= a/ expression

Related ID:jc_0737,jc_0742,na_0001,jc_0655,jc_0755,

8.2.2. Transition line condition, condition action, transition action

The entire descriptions on the transition line is referred to as the "transition label".
The following four descriptions are possible for the transition label.

1. Event

2. Condition

3. Condition action

4. Transition action

Event Condition AT B
FTyivary T¥iyalr

Vo]

switch_off [¢1]{ elec_off}/ light_off;

Related ID:jc_0754,jc_0753,db_0151

8.2.3. State Actions and Action Types
entry, during, exit, bind and on actions are called as action type.

List of Action Types

entry en Executes when the state becomes active

exit ex Executes when the state is active and a transition out of the state occurs

during du Executes when the state is active and a specific event occurs

bind - Binds an event or data object so that only that state and its children can
broadcast the event or change the data value

© Copyright 2013 JMAAB. Al rights reserved. 216

Action Type Short Description
name

on event_name - Executes when the state is active and it receives a broadcast of

event_name
on after(n, - Executes when the state is active and after it receives n broadcasts of
event_name) event_name
on before(n, - Executes when the state is active and before it receives n broadcasts of
event_name) event_name
on at(n, - Executes when the state is active and it receives exactly n broadcasts of
event_name) event_name
on every(n, - Executes when the state is active and upon receipt of every n broadcasts
event_name) of event_name

The actions for states are assigned to an action type using label notation with this general format:
name
entry:
entry actions
during:
during actions
exit:
exit actions
bind:
data_name, event_name
on event_name:
on event_name actions

Related ID:jc_0760,jc_0762

8.2.4. State Transition and Flow Chart

Stateflow can represent two features of state transition diagram and flowchart.

State transition diagram is a flow where states exist and state transition is made when conditions hold.
Flowchart is a flow where an action is executed at the change of condition regardless of changes of state.
Stateflow software allows a flowchart to be designed within a state transition diagram.

An entry action can be represented as flowchart in a state, which starts from default transition and moves
to junctions through transition lines, as in the following example. Starting from an inner transition anebles
during action by flowchart.

Additional information:

A flowchart cannot maintain its active state between updates. As a result, a flow chart always ends at a
“terminating junction” (a junction that has no valid outgoing transitions).

By contrast, a state transition diagram stores its current state in memory to preserve local data and active
state between updates. AS a result, state transition diagrams can begin executing where they left off in
the previous time step, making them suitable for modeling reactive or supervisory systems that depend on
history.

Flowchart and state transition diagram

Start point End point

Flowchart Default transition All endpoint are connected to
or the junctions
State

State transition Default transition Any of end points is

diagram or connected to a state

© Copyright 2013 JMAAB. All rights reserved. 217

| | State |

Difference from common flowchart and state transition diagram

Flowchart outside state Flowchart within state
Flowchart o —— = -
v | \
- Ny I
I I
I I
\ -
f | !
| |
N e = =’
State transition outside state State transition within state
State transition —_———— ‘\
diagram l |
| |—> |
4 : I
e 1 1
N = =7

Mixture of flowcharts and state transition diagrams with self-transition is subjected of more strict
constraints from both.

Example of flowchart with self-transition

Self-transition outside state Self-transition within state
- Form self-transition outside state, | - Form self-transition in state,
reset after execution reset with during action

State transition

5

Related ID:db_0132jc_0752

8.2.5. Backtrack

This example shows the behavior of transitions with junctions that force backtracking behavior in flow

charts. The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions").

g [c1}{a1}

A 1 [c3Ka3l [cdlad

=

2
[c2HaZ}

© Copyright 2013 JMAAB. All rights reserved. 218

Initially, state A is active and conditions c1, ¢2, and c¢3 are true, c4 is false:

1. The chart root checks to see if there is a valid transition from state A.

There is a valid transition segment marked with the condition c1 from state A to a connective
junction.

Condition c1 is true and action al executes.

Condition c3 is true and action a3 executes.

Condition c4 is not true and control flow backtracks to state A.

The chart root checks to see if there is another valid transition from state A.

There is a valid transition segment marked with the condition c2 from state A to a connective
junction.

Condition c2 is true and action a2 executes.

Condition c3 is true and action a3 executes.

Condition c4 is not true and control flow backtracks to state A.

The chart goes to sleep.

arwN

- 0o~NO

To resolve this problem, consider adding unconditional transitions to terminating junctions.
The terminating junctions allow flow to end if either ¢3 or c4 is not true. This design leaves state A active
without executing unnecessary actions.

0 [c1Kat:
[1 [c3KaF [c4Had;

1 =M

2

12.:2]{32} E‘b b

Related ID:jc_0751,jc_0773

8.2.6. Note on flowchart outside state

Writing a flowchart associated with a state is available either inside or outside of the state, however writing
the execution order and backtracking require attention.

The following flowchart, which evaluates transition from a to b after executing flowchart outside state,
appears to execute transition with the period same as that of nowger calculation.

However, transition line to b is not evaluated if the terminating point is reached via calculating transition
outside state; this is a state transition diagram which stays on a.

[State ==3]

—0

1
{ 2
] é
2
T /% T UL/
- i

2 [nowger ==3]

@

nowger =4; nowger =3;

[State ==2]

nowger =2;

1
1

[State ==1]
1

nowger =1;

© Copyright 2013 JMAAB. All rights reserved. 219

The flowchart should be written as follows: adding a condition that does not stand at the end of flowchart
outside state by design to make the transition line from a to b evaluated after executing flowchart outside
state.

This enables the flowchart outside state to be executed before transition and to be evaluated with the
latest value at the instant of transition. Note that this chart contains a dead path where condition never
hold, which may cause a bug when the specification is changed in the future.

SHERBR TR T &, AT— MOAT— MOBBRLNE

ETIEFFRVOT, REEBING 1 FHMRNIIIVITER TS
a

[State ==3]
= Q' Q
2
{
=4
]nowger ; é [State == 2] ;nowger =3
2
{
[State ==1] noweer =2
2
/% EILLIBLY #/ | noweer =1;

O
J

PRETIT NG VESICLTINWD RS T MEREC L., */
/¥AT— M OB ERITSED*/

2

[nowger==3]

In contrast, the following flowchart where the internal flowchart is always calculated with execution of the
state a, is written as easily comprehensible structure without dead paths.

Note, however, that it has such performance characteristic as evaluates transition from a to b in the next
period of internal flowchart calculation period.

Due to this characteristic, calculation execution and transition may not be processed timely for the
external flowchart. Use with sufficient attention.

MERBI TRITSE DL, SMBEHEHEHICRITINIOT.
l 1EHENTE®BTS

(a)
nowger =4;

[State ==3]

>\f>

1
{ 2
nowger =4 :
) [state =] nowger =3
1 }
2

[State == 1]
1
2

/% ATH LI */

nowger = 2;

{

nowger = 1;

[nowger==3]

(b }
.

Related ID:jc_0751,jc_0773

© Copyright 2013 JMAAB. All rights reserved. 220

8.2.7. How to use custom C code
Describe using the example model sf_custom.

gMyStructVar is not defined in Stateflow.

Loading of C source code is set on the Code Generation pane of Configuration Parameter.

Normally, functions of my_function are called from C source for use in Stateflow.

However, direct reference to global variables exposed by the C source is also available from Stateflow.

--------- my_header.h--------------
#include "tmwtypes.h"

extern real_T my_function(real _T x);

[* Definition of custom type */
typedef struct {

real_T a;

int8_T b[10];
IMyStruct;

[* External declaration of a global struct variable */
extern MyStruct gMyStructVar;
extern MyStruct *gMyStructPointerVar;

--------------- my_function.c--------------
#include "my_header.h"
#include <stdio.h>

[* Definition of global struct var */
MyStruct gMyStructVar,;
MyStruct *gMyStructPointerVar=NULL;

real_T my_function(real_T x)

{

real_Ty;

y=2*X;

return(y);
‘ Inside of Stateflow

(- T >

! !
during during

eMyStructVara = nput;
output_a=gMyStructVar a%3;
output b = my_function{input};

gMyStructVar b[1]=input+3;
eMyStructPonterVar = &eMyStructVar;
output c=eMyStruct PointerVa->b[1];

O e e e i
L P N S

...

© Copyright 2013 JMAAB. All rights reserved. 221

Code Generation

f Genersl Report Comments Symbols | Custom Code l Debug Interface | Verification Code Style liTemplr:“ >

HWT Use the same custom code settings as Simulation Target

L

| Include custom C code in generated:

Source file Header file:
Header file - - -
Initislize function #include “myheaderh

Terminate function

m

Enter code to appear at the top of the generated <model>.h header file.

Include list of additional:

Include directories Include directories:
Source files =
Libraries my_function o

Related ID:jm_0011

8.3. Initialization

8.3.1. Initial value setting in initialization

When a signal needs to be initialized, the initial values should be set correctly.
Cases that require initial values are the following.
1. When state variables are defined.
(1) When blocks that have state variables are used.
A) Use the internal block settings.
B) Use the external input values.
(2) When initial values are enabled for a block when a specific configuration is performed.
A) Setinitial values in Merge blocks.
B) Use signals registered in the the data dictionary.
2. When signal settings (with RAM) have been defined that can be referenced from the outside.
A) Use signals registered in the the data dictionary.

© Copyright 2013 JMAAB. All rights reserved. 222

8.3.2. List of blocks that have internal initialization values

Discrete—-Time Linear Systems

1

Sample & Hold Delays

-2 u -
- z
: ’ d i .
Unit Delay Delay Variable Integer Delay
Memory First-Order Zero— Order
7 Hold Hol
Delays) KTs
z-1 i
Tapped Delay Discrete-Time Signal Storage & Access
Integrator
A A A
1 1 > Sl
2+0.5 1+0.57°1 2(z-0.5) Data Store Data Store Data Store
Discrete Discrete Filter Discrete Read Memory Write
Transfer Fcn Zero—Pole
- K (-1) V(m)=Cx(n)+Du(n) Signal Attribute Manipulation
< P Tsz P xnt1)=Ax(n)*Bun) P
0
Difference Discrete Derivative Discrete State—Space m > > _'_I_ >
D [
0.05z 2-0.75 b z=0.75 X IC Rate Transition
z-0.95 z-0.95 z
Stateflow
Transfer Fen Transfer Fcn Transfer Fen
First Order Lead or Lag Real Zero
o L1 ouw
Ref - 0o P
PID(2) X R b 3 ("5+_1°'5Z U
b Chart

Discrete PID Controller Discrete PID Controller (2DOF)

Discrete FIR Filter

® When initial values have been set inside a block, an initial value list using annotations is useful to
allow you to visually confirm the input initial values.
(db_0140: Display of basic block parameters)

8.3.3. Initial values of signals registered in the the data dictionary

Set initial values for signals registered in the the data dictionary.

® Discrete block groups, such as UnitDelay, and Data Store Memory have state variables.

In the case of automatic code generation, the signal name, type and initial value can be set for state
variables by matching it to the signal in the data dictionary. When using a signal defined in the data
dictionary for a state variable, the respective initial values should be conformed to the same value.

® When using a signal defined in the data dictionary for a state variable.

For Discrete blocks, such as a UnitDelay, and Data Store Memory, settings are performed not when using
signals defined in the data dictionary for the block output line, but for the state variables inside the block.
Even if the signal name of the data dictionary is assigned to the signal line, RAM will be reserved in
duplicate, which would be a waste of RAM. Please use the label nhame in the sense of an annotation.

© Copyright 2013 JMAAB. All rights reserved. 223

variables inside the block.

Correct: When the signal is defined for the state

Incorrect: When the signal is defined for
the output signal of the block that has state
variables.

double

@b +] double
Int +

Add

D v.k.1_Signal

1
doublel ZP["
Unit DElay
Signal Iiry/properties sztting

Outl

" Signal Pr‘er‘ties: y_k_1_Signal I

Signal name: v k_1_Sizgnal]
i | 4 Lo o o |

Show propagated signals

ject

Logging and accessibility | Gode Generation | Documentation

[] Log signal data [] Test point

Unit Delay propertieg setting

"% Function Block Parameters: Ilnit Delay

UnitDelay

Sample and hold with one samglle period delay.

T Main \ State Attributes

State name: vy k_1_Signal *

[V] State name must resolve to Simulink fignal object

Package: |——— MNone ———

double

D T double
In1 +

Add Outl

£y.k 1_Signal [1

doubl
UnitfDelay

Signal line propertigs setting
r "% Signal Prope#es: y_k_1_Signal E

Signal name: y k_1_Signal

V] Signal name must resolve t/ Simulink signal object

Show propazated signals

Logging and accessibility ,Oode Generation I Documentation

] Log signal data [] Testfpoint
Unit Delay propérties setting
"% Function Block Paramet{rs: Unit Delay b
UnitDelay

Sample and hold with onefsample period delay.

State name:

State name must resolve to Simulink signg object

Data dictionary registration: Example of signal definition using Model Explorer

) ; 4 &8
@& Search

E Contents of ‘'rkspace f(only) Filter Contents

Column View: Show Details 1 obiect(s))_fv

Simulink Signal: y k_1_Signal

Name

[] vk sienal

Sample time:

Minimum:

-
Data type: auto v ‘ 3
Dimensions:

Sample mode:

Maximum: [1]

I Initial value: 0

m

lni\s:

Aligs:

Code generation options

Storage class: [Expartedﬁlobal -

Signal objects which have been defined in Workspace can be automatically associated with signal objects and

signal names of the same name, by using the disableimplicitsignalresolution (model name) command.

However, for the above mentioned state variables inside the block, they get associated with the state
variables inside the block and the signal name of the same name. If a globally set signal is associated with
2 variables at the same time, it is better to perform settings so that the state variables inside a block and

the signal label on the signal line have different names, because the model becomes unexecutable.

© Copyright 2013 JMAAB. All rights reserved.

224

8.3.4. Example of a block where the external input value is the initial value

<
(* Function Block Parameters: Delayl s)
1 Delay
Delay input by a fixed or variable number of samples. Based on an external signal,
the block can reset its state to the specified initial condition (from dialog or input
u) u port). And the block can also be controlled by the enable signal. The block supports
Z—2 2_1 both circular and array buffer for state storage
0 b pE b — i
) x 3 x0 Main | State Attributes
Delay Resettable Delay Data
Source Value Upper Limit
Delay length: [Dialoe +| 1
| Initial condiffion: Upnput por v
Algorithm
If the initial condition is set as External reset: [Nane -
the |n put port, the port name Input processing:]Elements as channels (sample based) 2|
W|” not be dISp|ayed unless Use circular buffer for state
the bIOCk SIZe IS made Sllghtly Sample time (-1 for inherited): -1
bigger than standard. |
I \) [OK] [Cancel] [Help Apply
— A

® Initialization behavior

If the initial value is input from the outside, the initial value of the signal in the data dictionary and the initial
value of the model will differ.

In setting the initial value in initialization, the init function is called to set to the signal either the value set
inside the block or the initial value defined in the data dictionary.

Next, the step function which is the data flow executive function is executed. When the external input
value is set as the initial value, the initial value setting is executed only for the first time.

Please be aware in your modeling that in C code the executive function and the execution timing both
differ.

Initialization explanation Difference in behavior in C code

Y 1 sampling

&
<

Y

&
<

Y

&
<

Y

init function step step

Set the specified function function

initial value to

the signal function function
step function

Required computation
to computg external
input value

Set the external

input value only
for the firgt time Do not execute

1 after the

ﬁ}

4

function second time

8.3.5. Initial value settings in a system configuration that would enable initialization
parameters

There are system configurations where, depending on their settings, initialization parameters are enabled for
combinations of conditional subsystems and Merge blocks. If initial values are required in theses
combinations of conditional subsystems and Merge blocks, either of the following modeling is performed.

© Copyright 2013 JMAAB. All rights reserved. 225

For instance, either of the following methods can be used for conditional subsystem Outport + Merge
e set in Outport
e setin Merge
e if an mpt signal is defined behind Merge, set in mpt signal

Exception:

When there are successive blocks with initial values and settings for each block are unnecessary for
clearly showing the signal’s initial value.

Correct: Initial value set in Merge

case[11]:
O —>»|ut case [2]:
Int default: |-
Switch Case case: {}
®_> In1 Outt
h2
If Action Subsystem Meree > (I)
Outl
case: {
" Function Block Parameters: Merge @
G
n3 Merge

If Action Subs Merge the input signals into a single output signal whose initial value is
specified by the ‘Ihitial output’ parameter. If ‘Ihitial output’ is empty, the
Merge block outputs the initial output of one of its driving blocks.

Terminator

Parameters
Nurmber of inputs:

2

Thitial output:
ij o

| TTETE UreguaT port wiatme
Input port offsets:

0

J OK][Cancel H Help][Apply

Correct: Initial value set in mpt object

case [1]:
O)—»|ut case [21]:
Int default: |
Switch Case cese: {}
Int Outt

h2

If Action Subsystem
Merel | ot T

Outl
case: {}
@_p In1 Outt
I3
If Action Subsysteml
Terminator h

Incorrect: Despite the requirement for an initial value setting, it is not shown anywhere.

© Copyright 2013 JMAAB. All rights reserved. 226

case [11]:

®_> ut case [2]:

Int default: |-

case: {}

In1 Outt

2

Switch Case

If Action Subsystem

Merge ——»(T)

Outl
Gase {1 \
Int f

" Function Block Parameters: Merge E

3

Merge

If Action Subsy, Merge the input signals into a single output signal whose initial value is

specified by the ‘Thitial output’ parameter. If ‘Initial output’ is empty, the
Merge block outputs the initial output of one of its driving blocks.

Terminator Parameters

Number of inputs:

2

Ihitial output:
0
[T Allow unequal port widths

Input port offsets:

0

\) [OK][GCancel J[Help Apply

8.4. Supplement: Commentary on functions

8.4.1. About Atomic Subsystem

Subsystem has a two types of settings: a setting referred to as "Atomic Subsystem” and another as
"virtual”. The difference between the virtual subsystem (a subsystem block in a default setting) and Atomic
Subsystem is whether a subsystem is treated as a block or not.

It does not have a practical meaning in a mathematical or physical sense, but a block that simply provides
visual expression is called a "virtual block".

For example, Mux block that compiles several signal line, From block that hands out the signal, and Goto
block all correspond to a virtual block. Since the subsystem block in the default setting only constitutes a
merely visual hierarchical structure, it also falls under virtual blocks. This subsystem is referred to as a
virtual subsystem.

The line of the virtual system external bracket is displayed thinly while the one for Atomic Subsystem is
displayed thickly.

) In1 Outl >) Int Outl D

Virtual Subsystem Atomic Subsystem

The major difference between Atomic Subsystem and virtual system is that the Atomic Subsystem is
detached from the external system, being not subjected to cross-border optimization.

For example, let's suppose a subsytem that consuls the external calculation result within a subsytem like
in the example below. This system is calculated from the four equations below.

templ=inl +in2

temp2=1in3 + in4

outl=inl +in2 + temp2

out2=templ +in3 + ind

Example of a virtual subsystem definition

© Copyright 2013 JMAAB. All rights reserved. 227

With virtual subsystem, it
is possible to consult the

1 P+
D in > rr— <C [values within other
in2 : outt subsystems.
[?] ® |
\ Virtual subsystem

in3 »
+ temp2 N

FF
o
c
=
N

Since mutual consultation is
possible, no delay occurs
even when it is turned into
a subsystem

However, Atomic System does not use internal calculation results for each subsystems. Therefore,
interium output value will use a calcualtion result that is delayed by a session.

templ=inl +in2

temp2=in4 + in5

outl=inl+in2 +in3

out3=in4+ in5 + in6

in3=temp2

in6=templ

Atomic Subsystem is prohibited from directly referincing the interium calculation result to other
subsystems.

Since a mutual consultation is
]] tempt impossible, an unnecessary
+ . . .
— R
[E— : | delay WI.|| occur within the
outt connection between

2 subsystems.
in3 |
Atomic Subsystem

Yy

1
E
Unit Delay1

temp2
Eamy
in4 » +
+
[

in6

1

z
Unit Delay

A

Atomic Subsystem can select factor settings of C-source.

With Atomic Subsystem, as explained above, the inside of subsystem will become encapsulated
(objectified). Depending on the relationship between before and after, one should acknowledge that a
static RAM field can be secured for the output signal. Atomic Subsystem (including the addition of factor
setting) should not be used carelessly for reasons such as to merely make the test easier to do. Setting
that conducts factor setting will not simply have a factor name inserted within a C code. It is necessary to
acknowledge that it is described as a mathematically independent system and to review under which
cases Atomic Subsystem should be used.

Including the relation with the structure layer that will be mentioned later on, it is necessary to determine
an operation rule per project and to determine its relationship with the guideline rules.

© Copyright 2013 JMAAB. All rights reserved. 228

The difference between Atomic Subsystem and virtual subsystem (Japanese)

http: //www.mathworks.co.jp/support/solutions/ja/data/1-CYPFSL/index.html? product=SL&solution=1-
CYPFSL

Atomic Subsystem (Japanese)

http: //lwww.mathworks.co.jp/jp/help/simulink/siref/Subsystem.htmi

Explanation of algebra loops (Japanese)

http: /lwww.mathworks.co.jp/jp/help/simulink/ug/simulating-dynamic-systems.html#f7-19688

© Copyright 2013 JMAAB. All rights reserved. 229

9. Determining guideline operation rules

Describe the deployment rules and processes for the guideline implementation.

9.1. Necessity of process definition

Automobiles need to be safe. In order to develop a safe product, various initiatives will become necessary.
The model base development that utilizes simulation is suitable for developing a safer system. However,
this doesn't mean that a safe system will be made just because simulations were used. Although the
development of good control and good functions are necessary, process definition and the development
environment that will be used will be equally important. A safe system planning will be conducted after
implementing various agreements when starting the development.

9.2. Aversion of MATLAB/Simulink

When starting a project, the version of MATLAB/Simulink to be used will be determined.

This includes mixing various MATLAB versions for each process.

For example, if a version that conducts automatic code generation was “R2011b”, it is possible to
generate code and conduct verification with R2011b by downgrading test cases by generating test cases
by having Simulink Design Verifier (SLDV), a verification tool box that uses a formal method, use R2013a.
For each project, one should decide upon which software version to be used at which stage. At that
specific process, the version that was decided upon should be used by everyone.

Furthermore, it is necessary to check the latest bug report on a regular basis. Depending on the bug, one
may need to change to the latest version. It doesn't 't mean that one cannot change once after making a
choice. One needs to appropriately evaluate the risks of malfunctioning occurring due to a bug and risks
from upgrading the version. It is necessary to always have a structure in place that allows to be changed
to the latest version and to appropriately evaluate and judge what is the safest option.

9.3. MATLAB/Simulink setting

The setting of MATLAB/Simulink specifically set for each MATLAB should be operated in a unified
manner with the project. In particular, Simulink setting that affects the appearance setting requires
unification. The option name to be unified will be listed below.

® Displayed standard value of a new model

» The display of a mask subsystem
» The display of a library link
» Displaying non-scholar line with a wide-width lines
» The display of a data-type terminal
® [ont setting of a new model
» Block/line/annotation
® Standard value of an editor
» Using the traditional block diagram theme

9.4. Usable blocks

jm_0001 and hd_0001 display the blocks that are prohibited to use. These rules are rules determined
by whether the code generation is enable/disable. However, usable blocks are not only able/disable to
generate codes, they also change depending on the education level.

There are many blocks in Simulink. Depending on the block, an efficient code can be generated or a
combination of several basic blocks can be represented using one function. However, when there's a
difference within the Simulink skill level within an organization, one should limit the blocks and design
within a designated range. However, decreasing the block number too much can deteriorate the
readability. Adverse effects include increasing the user library and variation within the descriptions for the
same function.

An engineer that possesses a skill level that the organization sees as the standard should be set. A list
of usable Simulink block should be made and operated.

When an advanced practitioner uses an unsupported block, it should be stored within a mask
subsystem, concealing it so that it cannot be seen by a general user.

© Copyright 2013 JMAAB. All rights reserved. 230

In conjunction to the eduction structure, the operation rules will be determined when starting a project.

9.5. Setting of the configuration to be used

9.5.1. Optimization parameters

Optimization options highly affect codes generated through automatic code generation. With a good
understanding of your own product characteristics, these options should be configured so that the setting
match to the security level suitable for the product. Optimization should not be applied easily for the
products that require utmost consideration to security.

In general, for automotive built-in products, computing speed is critical, and also less RAM/ROM is
thought to be ideal. For example, for auto-industry products, optimization settings are enabled on the
“Conditional Input Branch Execution” pane. This improves computation rate by executing only the side
where the condition holds during execution of the conditional branch using Switch.

In contrast, for aviation industry, the pane is disabled since stabilization of execution speed is critical, and
calculating in both sides is preferred in order to keep stable calculation period even if calculation is
needed only on the side where the condition holds.

These optimization settings are also deeply related with the SIL level of function safety, as described
above vary in adoption criterion depending on industries, need to be determined with understanding of
your own product characteristics.

9.5.2. Other configurations

< Hardware implementation parameter settings

Describes model system hardware characteristics, including products and test hardware configuration
setup for simulation and code generation.

Configure appropriately to be compatible with the microcomputer the project uses. Especially mind
unintended utility function might be inserted unless signed integer division rounding is defined.

< Model reference parameter settings

Specified when using model references.

Options to include other models in this model, options to include this model in another model, and build
options of simulation and code generation targets.

< Simulation target parameter settings
Configures a simulation target of a model including a MATLAB Function block, Stateflow chart, or Truth
Table block.

9.5.3. Configuration settings

For configuration settings, see the hisl and cgsl guidelines developed by MathWorks. The guideline
describes recommended patterns for each version. Determine to accept or reject according to the needs
of individual projects.

hisl_0040: Configuration Parameter > Solver > Simulation Time

hisl_0041: Configuration Parameter > Solver > Solver options

hisl_0042: Configuration Parameter > Solver > Tasking and sample time options
hisl_0043: Configuration Parameter > Diagnostics > Solver

hisl_0044: Configuration Parameter > Diagnostics > Sample Time

hisl_0301: Configuration Parameter > Diagnostics > Compatibility

hisl_0302: Configuration Parameter > Diagnostics > Data Validity > Parameters
hisl_0303: Configuration Parameter > Diagnostics > Data Validity > Merge Block
hisl_0304: Configuration Parameter > Diagnostics > Data Validity > Model Initialization
hisl_0305: Configuration Parameter > Diagnostics > Data Validity > Debug
hisl_0306: Configuration Parameter > Diagnostics > Connectivity > Signal
hisl_0307: Configuration Parameter > Diagnostics > Connectivity > Bus
hisl_0308: Configuration Parameter > Diagnostics > Connectivity > Function calls
hisl_0309: Configuration Parameter > Diagnostics > Type Conversion

hisl_0310: Configuration Parameter > Diagnostics > Model Referencing

© Copyright 2013 JMAAB. Al rights reserved. 231

hisl_0311: Configuration Parameter > Diagnostics > Stateflow

A1k

hisl_0045: Configuration Parameter > Optimization > Implement logic signals as Boolean data (vs.
double)

hisl_0046: Configuration Parameter > Optimization > Block reduction

hisl_0048: Configuration Parameter > Optimization > Application lifespan (days)

hisl_0051: Configuration Parameter > Optimization > Signals and Parameters > Loop unrolling
threshold

hisl_0052: Configuration Parameter > Optimization > Data initialization

hisl_0053: Configuration Parameter > Optimization > Remove code from floating-point to integer
conversions that wraps out-of-range values]

hisl_0054: Configuration Parameter > Optimization > Remove code that protects against division
arithmetic exceptions

hisl_0055: Prioritization of code generation objectives for high-integrity systems

Modeling Guideline
cgsl_0301: Prioritization of code generation objectives for code efficiency
cgsl_0302: Diagnostic settings for mutilate and multitasking models

9.6. Guideline rules that are used

The numerical values and the list in the rules are recommended standard values. They are not
numerical values that must be adhered to. For example, the hierarchizing of the na_0038 state is written
to be up to 3 hierarchy level. However, there is no need to necessary operate by limiting it to 3 hierarchy.
It can be altered to 5 hierarchy level.

Within the guideline, there are types of blocks to become the subject and parameters that can be
changed within rules, and not just numerical values. These parameters will be listed in the "Rule
Parameter List" as an attached resource material.

Furthermore, with a state in which all rules can be checked by an automatic checker as a precondition,
a list has summarized which rule should be effective in which situation.

9.6.1. The adoption of the guideline rule and the setting of the process

It is necessary to determine which rule to be adopted in what sort of composition. It should be
determined at the start of the project as to which adopted rule will be used at what sort of process. The
guideline requires an appropriate operation rule that matches with the development process, such as: will
the evaluation only be done at the final stage where the automatic code generation conducted or whether
the adopted rules be switched according to the stages starting from the initial development phase?

9.6.2. The setting of the guideline rule application field and the clarification of the
exclusion condition

It is necessary to determine the field to adopt the rule. For example, many rules should limit to the
adoption of the model that represented the Autostar application field. With models that achieved
interruption used in the basic software field or models that add process that prohibits interruption during
calculation execution, there are many processes that cannot be achieved without using several special
custom S-function or Data Store Memory blocks. Furthermore, with fields that only professional who
specialize in said field writes down, such as the designing of a custom library block that many users use,
is not a restricted area that this guideline is aiming for to begin with.

Many rules in this guideline are made by having the field in which several engineers with a moderate
level edit as the target. The rules were made with the intention that a model with a high intelligibility will be
made within that field. A field that can be achieved by a selected few professionals using specialized
techniques should be excluded from the restriction target of the guideline by limiting said field and
establishing a unique system in which only the professionals touch the field.

Furthermore, when having a control model for the entire model that is operated with RCP as a guideline
rule subject, the entire model should not be set as a target easily; instead, the field needs to be limited. It it
necessary to conduct a code generation and pay attention to the areas that will be implemented to the
built-in microcomputer and areas that will not. Scheduler model that won’t be implemented and made only
for RCP, PWM signal that is only for operating the real machine, and the interface section that includes

© Copyright 2013 JMAAB. All rights reserved. 232

blocks that correspond to the drivers such as CAN signal, are not the control models that this guideline
applies to.

As mentioned above, when changing the application field of the guideline within the same model, a
model structure that separates code generation target from fields that are not is required. Furthermore,
their unique rules also need to be added.

9.6.3. The decision on the parameter that is stipulated in the guideline

This guideline or ones that the users set should not simply be adopted as they are. Instead, various
parameters need to be reviewed in accordance to the characteristics of the product and the development
environment tools that are being used.

For example, "in the jc_0061: display”, there are parts where the organization's education state
determines the block type in which the block name should be displayed, block type that should not be
displayed, and the block type that could be either. There are also times where different setting values are
set due to the difference in the group process of the users.

9.6.4. Guideline checker adoption process determination

Whether to adopt an automatic checker or to check by eyes during the review session for the checking
process should be determined first.

It is possible to used a checker created in one's own company.

Having many automatic check items will reduce the time for review. However, even if everything can be
automatically checked, a review should always be conducted by a highly skilled member. Checks should
not only done by an automatic checker but it is effective when combined with a review.

The rule adoption is determined by the organization’s education level (i.e., which process is being
adopted) and is not only determined by the functions that the project should achieve or their size.

9.6.5. Addition of the model analysis process

The designed model preferably should be set when reviewing the list of rules to be adopted by
analyzing the usage tendency of the block and the school of the description style. If possible, the rule
review period should be set in advance during the initial stage of the project. For example, the frequency
of used block of an analysis of a simple model can be investigated by using sldiagnostics. Adjust the
operation rules list by identifying blocks that are frequently used and those that aren’t. Furthermore,
measure such tendencies such as at which coordination plane the block that has status variables such as
UnitDelay are located at, whether to have UnitDelay outside or inside of the subsystem, whether to set
abs block to the output side of the subsystem, and whether to process it at the input side after receiving a
signal. The addition of rule to unify the schools and anticipating in advance the modification labor hour will
lead to the improvement of re-usability later on.

9.6.6. Rule alteration procedure

Rules that have been decided upon once do not require to be strictly adhered to for eternity.

When changing the rule, a correct procedure and process are required. Listen to the needs of the
designer and review what needs to be changed. After that, if the root issue for the alteration is caused by
misunderstanding of the usage, the addition and execution of training is necessary, rather than revising
the rule. However, if there is a restriction arising from the control specifications and objectives of the
company or hardware (i.e., implemented microcomputer), a procedure to relax the rule according to the
needs should be set.

9.6.7. Arrangement of development environment

Using CMM and SPICE as reference, adopt a process in accordance to the level of each project and
make stipulations in accordance to the level.

Levels may refer to the maturation level of MBD infiltration, training level, skill level, and the size of the
model. Otherwise, if the target product is subjected to function safety (1IS026262), SIL level will also
become involved. When conducting a system design with a high SIL level, traceability should be secured
for various parts within the process.

For example, if there is a project with difference in various data sets, there should be a management
chart that dictates which data dictionary should be used for that project. When conducting automatic code
generation, it is necessary to prove whether the operation was conduct according to the management
chart.

© Copyright 2013 JMAAB. All rights reserved. 233

Immediately before an automatic code generation, read the management chart into it, automatically
read that data in according to the chart, and read in the correct appointed configuration set before
conducting the code generation. Within this process, the following will become necessary: the appointed
data dictionary, data within the work space, used configuration, and lastly, the storage of all the logs on
people who packaged the models and codes and stored, people and the files that were read into the PC,
and the types of codes, and the report output.

Instead of creating this system manually, an automatic generation using a tool is effective. This is
because concerning the numerical value selection mistake of the data, a third-party other than the person
who set the value cannot easily identify which value should be used by which project. However, if there's a
document link that displays the basis, it can be determined by a third party or automatically. Combining it
with the data, using the original chart with the intention of the designer written on it will decrease the
possibility of generating mistakes. Such automatic system is needed to begin with even if the SIL level is
not high.

Of course, a system that automatically checks the guideline rules should aslo be utilized. A system that
checks the rule according to the unique decisions of the company will also become necessary. Write down
an account for checker to modify an area with issues or exclude areas with no issues after checking the
areas detected as errors when checking with a checker, Naturally, unique rules for the checker to
determine exclusion will be required. There is a necessity to develop tools that customized these areas.

© Copyright 2013 JMAAB. All rights reserved. 234

10.

Model Architecture Explanation

This chapter describes only the outline on model architecture suitable for model-based development to
share the concept, since it is difficult to establish standards for model architecture which includes
combination of the existing software of individual companies with the model architecture explained in the
JMAAB Guideline Ver. 1.0, and Simulink also provides a variety of features appropriate for the unique
circumstances of each company.

10.1. The roles of Simulink and Stateflow

It is possible to describe all systems to be compatible with either Simulink or Stateflow.
When Stateflow alone is used, Simulink is required for in/outputs and structuring only, but within
Stateflow a variety of formula processing is possible. When using Simulink, it is possible to realize
complex state variables through methods such as the use of Switch-Case blocks.
Accordingly, whether Simulink or Stateflow is used in modeling specific parts of control algorithms comes
down to subjective views on which one is easier to understand. The technique to realize this should be
selected depending on the training level within organizations.
In most cases RAM efficiency is worse for Stateflow than it is for Simulink. Therefore, Simulink has an
advantage in computations that use simple formulas. Apart from that, Simulink is also more advantageous
in instances such as state variables that can be operated with simple flip-flops and Relay blocks. When
describing things with Stateflow that can be described with Simulink, the most suitable technique should
be investigated in consideration of the following risks.
e Static RAM must be ensured to allow visualization of Stateflow inputs, outputs and internal
variables.
e When general computational formulas are used internally, the user designs the overflow
prevention.
e When the computations are done externally, the whole gets segmentalized, reducing the level of
understanding of the whole.
There are cases when Stateflow obtains more efficient sources than Simulink for optimum expressions
that are close to C source, but these kinds of models do not have a good appearance nor are they very
easy to understand. In these kinds of cases, it is more beneficial to use S-functions instead of using
Stateflow modeling.
Stateflow can note computations where specific arrangements are specified, or computations using for-
loops, more efficiently than Simulink, but in recent years the use of MATLAB language for descriptions in
the latest MATLAB has also become very convenient.

When modeling using Stateflow, if dealing with states as described below, readability improves by
describing them as state transitions.

1. Different output values are output for identical inputs.

2. Multiple states exist. (if possible, from 3 or more)

3. Where a meaning of a state is defined, that is not an infinite number but a discrete value.

4. Inside a state, initialization (first time) and differentiation during execution (after the second time)

is required.

5. Apart from state variables, input and output variables are signals that can be visualized.
For instance, in flip-flop circuits, different output values are outputted for inputs. Moreover, state variables
are limited to 0, 1. However, in the sense that for the input/output variables 0, 1, both minimum and
maximum state variable values 0, 1 are used, there is the possibility of classification in infinite numbers.
Also, there is no differentiation between initialization and during execution inside a state. In other words,
only 1 flip-flop applies out of the 4 above, so Simulink can be said to be more advantageous.
The question as to whether Simulink or Stateflow must be used for the design should be answered in
consultation with several people, depending on the problems that must be implemented. Whether
implementation in Stateflow is with state transitions or with flow charts should also be determined in
consultation.
Things that should be handled as states are state transitions and conditional branches that are not states
are flow charts. Truth tables are also classified as a conditional branch implementation method.
Moreover, when designing the above mentioned states as state transitions using Stateflow, Classic mode
should be used in order to implement it as software into the control system’s embedded micro controller.

© Copyright 2013 JMAAB. All rights reserved. 235

Stateflow is HDL coder supported. Mealy and Moore modes should be used when implementing as HDL
coder. Moreover, when protection is required against internal electric leaks, the Moore mode is more

appropriate.
These guidelines do not describe cases of use as HDL coder. Please note that these are guidelines for

Simulink and Stateflow that are implemented as software in control systems.

© Copyright 2013 JMAAB. All rights reserved. 236

10.2. Hierarchical structure of a controller model

Shows the separation concept, or the layout concept, for the hierarchical structure of a controller model,
as reference examples. This is not a clear standard as a rule, but it is a basic approach to modeling.

10.2.1. Types of hierarchies

. Bundmg method of hierarchies
Division into subsystems with the main purpose of space adjustments within the layer should
be avoided.
The following layer concepts should be allocated to the layers, and subsystems should be
divided based on that.
Unnecessary layer concepts do not need to be allocated to a layer.
Multiple layer concepts may be allocated to one layer.

e Layer concept

Layer concept Layer purpose
Top Function layer Broad functional division
Layer Schedule layer Expression of execution timing (sampling, order)
Bottom Sub function layer | Detailed function division
Layer Control flow layer | Division according to processing order (input —
judgment — output, etc.)

Selection layer Divide (select output with Merge block) into
format that switches the active subsystem and
execute

Data flow layer Layer for non-separable computations

10.2.2. Layout method for top layer

There are principally 3 types of layout methods for the top layer.

e Simple control model
Represents function layer and schedule layer in the same layer. Here, function = execution unit.
Example: When the control model only has one sampling cycle, and all functions are arranged in
execution order

e Complex control model Type a
Schedule layer is placed at the top.
Makes integration with the hand-written code easy, but functions are divided and the readability
as a model is reduced.

e Complex control model Type 3
The function layers are arranged at the top, and schedule layers are built below the individual

function layers.

© Copyright 2013 JMAAB. All rights reserved. 237

Example | Schedule layer
Type a - :
Function layer Function layer
C1 > C2
> S1 > >
» S2 >
Subsystem for low speed Subsystem for high speed
Example | Function layer
Type B Schedule layer Schedule layer
» S1 » C1
» S2 » C2 R
Sensing function subsystem Control function subsystem

The subsystem indicated in bold is set to be an atomic subsystem.

10.2.3. : Modeling method for function layers and sub-function layers.

e Division into subsystems by function. The respective subsystems represent “1 function”.

e "1 function” is not necessarily an execution unit. For that reason, the respective subsystems
cannot necessarily be made into Atomic Subsystems.
(For type B in the example above, it is appropriate to make the function layer subsystems into
virtual subsystems. If they are changed into an Atomic Subsystem, algebraic loops are created.)

e Using annotation, the function overview must be either described on the layer or included in the
subsystem overview and displayed as an annotation.

e If there are several big functions, partitioning of the model, using model references for each
function, should also be considered.

10.2.4. Modeling method for schedule layers

Sampling intervals and priority order should be set.
The previous guideline corresponds to the approach that uses “jc_0321: Trigger layer”.

Point for attention when setting multiple sampling intervals
In connected systems with varying sampling intervals, a signal is required for the fast cycle for times
even when the signal for the slow cycle has not been computed. When connecting using different
sampling intervals, a pinned RAM area is always required. For that reason, always split systems for each
different sampling times in the top layer, without connecting different sampling times in the bottom layer.

Setting priority ranking
This is important when designing multiple different independent functions. It is advisable that
computation sequences are freely determined as much as possible depending on all subsystem
connections.
For the priority order, the following two need to be set: priority ranking for different rates and priority
ranking within an identical sampling rate.

Implementation method for sampling interval and priority ranking

© Copyright 2013 JMAAB. All rights reserved. 238

The described methods can broadly be divided into 2 types.
1. Perform setting of sampling times and priority rankings for subsystems or blocks.
2. Using conditional subsystems, the user sets independent rankings to match the scheduler.
Patterns exist here with various conditions, such as configuration multi-rate and single rate, Atomic
Subsystem setting, use/non-use of model references. Which among these are employed is closely linked
to the C code implementation method, and substantially varies depending on the project status.
The typical factors that are substantially affected are listed below.
® On the model side
» Do several sampling times exist in the model?
» Is it a model that realizes several independent functions?
» Use of model references
» Number of models (whether there are multiple sources with code generated in Simulink)
® On the source side
Use/non-use of real-time OS
Consistency of usable sampling intervals and computation cycles to be implemented
Applicable area (application domain or basic software)
Source code type: AUTOSAR conform - not conform - not supported.
RAM, ROM specifically RAM margin

VVVYVYYVY

In consideration of the above, the corresponding patterns will vary depending on the use case, so we will
introduce the patterns in the appendix material.

10.2.5. Modeling method for control flow layers

The arrangement of the control layer is a layer used to express all input processing, intermediate
processing and output processing in one function. Significance is attached to the arrangement of blocks
and subsystems. Multiple mixed small functions are grouped by dividing them between the 3 biggest
stages of input processing, intermediate processing and output processing, which form the conceptual
basis of control. The general configuration image is close to the data flow layer, and it is represented in a
horizontal line. The difference with a data flow layer is its construction from multiple subsystems and
blocks.

In control flow layers, the horizontal direction indicates processing with different significance, and blocks with
the same significance are lined up vertically.

NXTway-GS Contrgjiter
Calculate PWM duty to hinimize the dif beteen and valuel
o e
,,,,, 27 - L
thetayet . ey — D
1 [’h‘ -
e [
e L IRy 2=
N
<, A1 - i~ D
Input Intermediate Output
processing processing processing

Block groups are arranged horizontally and as a whole are arranged by being given a provisional
meaning.

The red borders signify the delimiter for the processing that is not visible, and the red borders correspond
to objects called virtual objects. Using annotations to mark the delimiters makes it easier to understand.

© Copyright 2013 JMAAB. All rights reserved. 239

, Intermediate (| Output
- processing || processing
f:;) fuel rate

— mode
Shutdown Muftiport fuel rat

ED >rorpren Switch ﬁ: foel

3 B TEA-I-I0-=on P Failures cutput rak
Failures 4R = 100, TER4 0
e Input >
e processing

Switchable
Compensstion

Control flow layers can co-exist with blocks that have a function.

They are positioned in the middle area between the sub-function layer and the data flow layer.

Control flow layers are used when the number of blocks becomes too large when all is described in the
data flow layer and when units that can be given the minimum partial meaning are made into subsystems.
Attaching significance to the placement organizes the internal layer configuration and makes it easier to
understand. It is also effective in improving maintainability by avoiding the creation of unnecessary layers.
Even if it consists of only blocks, and not a mix of subsystems and blocks, if the horizontal layout can be
split into input/intermediate/output, it is a control flow layer.

10.2.6. Modeling method for selection layers

Selection layers can be written vertically or horizontally. (There is no significance to which orientation is
chosen)
Selection layers are mixed with control flow layers.
Because there are switch functions for subsystems where only either one runs depending on the
conditional control flow inside the red border, this is termed a selection layer. It is also described as a control
flow layer because the whole lines up initial processing/intermediate processing (conditional control
flow)/output processing. In the control flow layer, the horizontal direction indicates processing with
different significance, and parallel processing with the same significance is lined up vertically. In selection
layers, no significance is attached to the direction they are arranged in, but they show layers where
subsystem groups are described where only either one runs.
Example:
- Switching of coupled functions between running upwards or downwards, changing in chronological
order.
Switching to setting where the computation switches after the first time (immediately after reset) and
second time.
Switching between destination A and destination B.

© Copyright 2013 JMAAB. All rights reserved. 240

— g L) F—— Layer with a conditional
P LI control flow layer description
Rt :] is represented as a selection
#=1 [a S : defay
en] | e layer.
o2 fsil FIA Norm2 8581 T4 — 1§ —7 0= on
{warmup) =2 —
@ ; fuel rate

feedforward : 8.76962-8.5104
2:0.74082

fuelrate :
4 = - ‘correction
feedback H

Foed point
LOW Mode

case: {} >

fuel rate _J—> Merge T5:0.01

0.25918 i fuel rate
——— Outputt — ignal Specificationt

The horizontal _ Fem |
sequence is the : e
control flow layer mion

defauit: {}
Outt

f Action Subsystem

Loop Compensatior ari\d Filtering

10.2.7. Modeling method for data flow layers

A data flow layer is the layer below the control flow layer and selection layer.

When it represents one function as a whole, and the roles of input processing, intermediate processing
and output processing cannot be divided, it is a data flow layer. For instance, systems performing one
continuous computation that cannot be split. Data flow layers do not permit co-existence with subsystems
apart from those where exclusion conditions apply.

Exclusion conditions: Co-existence with the following subsystems is allowed.

® Subsystems where reusable functions have been set.

® Masked subsystems that are registered in the Simulink standard.

® Masked subsystems registered in a library by the user.

Example of a simple data flow layer

ﬂu—’ g
J B—' s

Example of a complex data flow layer
gm0

oS Tog Egmamn
Ttk 2-0)
es ey

wrome

Feedback Control

X
When input processing and intermediate processing cannot be clearly divided in a layout as the one
above, they are represented as a data flow layer.

© Copyright 2013 JMAAB. All rights reserved. 241

A data flow layer becomes complicated when both the feed forward reply and the the feedback reply from
the same signal are computed at the same time. Even when the number of blocks in this type of cases is
a bit large, the creation of a subsystem in between should not be included in the design when the
functions cannot be clearly divided. When meaning is attached through division, please design as a
control flow layer.

10.2.8. Relation between embedded implementation and Simulink models

Running with the actual embedded micro controller requires embedding the C code generated from the
Simulink model into the micro controller. This will substantially affect the Simulink model configuration,
depending on to what extent the Simulink model will model the functions concerned, on how it is
embedded, and on how the schedule on the embedded side is set.

There will be a significant effect if the tasks of the embedded micro controller to be implemented and the
tasks used by the Simulink model are different.

10.3. AUTOSAR Concept

Here, we will not explain the AUTOSAR standard, but rather we will explain the concept of AUTOSAR.
Users do not have to conform fully to AUTOSAR, but they must have an understanding of it and use it as
a reference in modeling.

10.3.1. What is the AUTOSAR software platform concept?

When designing a control model, you must use the AUTOSAR software platform concept and examine
whether the model you are designing classifies as an application or as basic software.
A model that mixes application and basic software must be split at the design stage.
The AUTOSAR software platform concept
® High capacity, low speed, regular processing is dealt with in the application layer.
® High speed or irregular driver types are dealt with in the basic software layer
The AUTOSAR software platform is represented as the configuration in Fig. 10.1.

Application layer Services Layer

Runtime Environment (RTE)
ECU Abstraction Layer

Microcontroller
Abstraction Layer

Fig. 10.1 System configuration example (see Architecture — Overview of Software Layers Top and view
Coarse view
AUTOSAR Release 4.0 Document Title: Layered Software Architecture.)

For instance, in designing an engine control model, no model is built where all computations are executed
with the interrupt as a base point, but computations that are shared for all cylinders are performed through
regular computations in the application area. For instance, computations of the current emissions status or
the target torque. And computation results, which have been computed with the application through the
RTE when an irregular interrupt occurs from the basic software area, are received, and the actuator is
actualy activated. It is the concept of AUTOSTAR for computations of the basic software area to be as
simple as possible and for shared computation functions to be placed in the application.

When all the modeling is done in Simulink, it is advisable to have as many single computations in the
interrupt area as possible. A design is required that places controls that are as simple as possible on the
interrupt side, reduces the computation volume for that instant, and acquires results that, when possible,
are computed at regular intervals. If possible, PID standard computations should not be included.
Functions that only execute the designated actions are ideal. However, necessary computations should

© Copyright 2013 JMAAB. Al rights reserved. 242

not be excluded. For instance, for fault diagnosis, computations where a conclusion must be drawn at that
instant should be performed even if they are complex computations.

For those parts that run in a slower layer than the interrupt processing and receive commands to an
actuator which is faster than the application execution speed, the direct execution code should not be
given, but a way should be devised so that the target value or gradient until the the next command is
delivered is obtained during sampling through linear interpolation.

10.3.2. RCP and AUTOSAR software platform

Modeling using devices such as RCP is pretty similar to the AUTOSAR software update in concept. Of
course, generated codes do not conform to the AUTOSAR specifications. For example, 1/0O software of
RCP allows vender-provided S-functions to be linked, and a user designs the application domain. Custom
functions in the application domain and S-functions are wired in the Simulink block diagram, which does
not require consciousness of interaction with RAM and so on.

The output C code runs on the real-time OS, and I/O software and applications created by Simulink are
output into different source files, the real-time operation part and the part handled as interrupt are
separated naturally. Users do not have to be conscious of those platforms; 1/O S-function created by
vender is executed when needed, and application model is modeled without consciousness of content and
timing of I/O processes and behaves.

The actual control model/software which has such software structure has more advantages. Since RCP is
capable of concentrate on developing application without so much regard to software structure, those use
AUTOSAR software platform naturally. In other words, if your own product does not conform the
AUTOSAR platform in the development using the AUTOSAR platform on RCP, you must customize the
generated code and held back from sharing in the fruits of model-based development.

10.4. Single-task and multi-task

The realization method for the scheduler in embedded software has single-task and multi-task settings.
10.4.1. Single-task

For single-task, basic sampling is 2 msec, and when sampling rates of 2 msec, 8 msec and 10 msec exist
within the model, pseudo sampling rates of 8, 10 msec are created in the basic 2 msec sampling rate. The
execution frequency per 2 msec is counted as follows: 8 msec is executed once for every four 2 msec
cycles, and 10 msec is executed once for every five. The sampling interval function specified by this
frequency is executed. Attention needs to be paid to the fact that there is generally as much complex
processing as functions of a lower frequency, and the 2 msec, 8 msec and 10 msec cycles are all
computed with the same 2 msec. Because all computations need to be completed within 2 msec for
embedded software running in real-time, the 8 msec and 10 msec functions are in this kind of cases split
into several so that all 2 msec computations are of an almost equal volume. In this way the computation
volume per cycle is reduced through partitioning, and the CPU load is equally divided. For that reason the
10 msec sampling function is divided into the following 5.

Fundamental | Offset
frequency

10msec Omsec
10msec 2msec
10msec 4msec
10msec 6msec
10msec 8msec

In the same way, the 8 msec sampling function is divided into 4.
However, as equal division is not always possible, functions cannot be allocated to all cycles, but it is
important to keep a uniform CPU load.

© Copyright 2013 JMAAB. All rights reserved. 243

2msec

<«—> :
8msec 1
< > !
10msec :
< P

Funcon1 [0 O 0O [

Function 2 -1

- --------

All computations must L

I
I
I
I
I
! I
II I
0 o0 p 0 O O R A i I
T 1
' I
I
I
I
I
I
I
I
I
I
|

-2 be contained within the
2 msec cycle. ¥
Function 3 -1 | E ' E
-2 :
] _ ! 5
-3 B S
4 l

® How to set frequency-divided setting of task
Set Tasking mode for periodic sample times to Single Tasking for Simulink task setting.

-
& Configuration Parameters: ModelArchitecture_test4/Configuration (Active) . . E@M
Select: Simulation time it
[
Solver Start time: 0.0 Stop time: 100
Data Import/Export
g OPt'm'ZaFlon Solver options
> Disgnostics
Hardware Implementation Type: [Fixed-step v | Salver: |discrete (no continuous states))
Model Referencing
> Simulation Target Fixed-step size (fundamental sample time): 0.002
> Code Generation

Tasking and sample time options

|

Periodic sample time constraint: [Unconstrained v] i

Tasking mode for periodic sample times: {SingleTaiiﬁn_g V] I |
Auto

[T] Automatically handle rate transition for data transfer SingleTasking

MultiTasking

[] Higher priority value indicates higher task priority

Then enter values of “sampling period, offset” in the subsystem’s “Sample Time” setting field. A
subsystem to which a sampling period can be specified is an atomic subsystem.

Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select ‘Treat as atomic unit’.

Main | Code C Genera{ian_‘

Show port labels [FromF'ortIcon V]

Read/Write permissions: [ReadWrite v]

Name of error callback function:

Permit hierarchical resolution: [AII V]

[¥] Treat as atomic unit
N TS S S) rences |
Sample time (-1 for inherited) l
[0.010,0.002]

J‘ [OK J[Cancel][Help 1 Apply

© Copyright 2013 JMAAB. All rights reserved. 244

10.4.2. Multi-task

Multi-task sampling is executed using a real-time OS that supports multi-task sampling. In single-task
sampling, described above, equalizing the CPU load is not done automatically, but a person divides the
functions and allocates them to the appointed task. In multi-task sampling, the CPU performs the
computations automatically in line with the current status, and there is no need for a person to set detailed
settings. Computations are performed and results are output starting from the task with the highest
priority, but task priorities are specified by a person. In most cases fast tasks are assigned highest priority.

2msec

d—D
<«

8msec

>
al

A\ 4

10msec

> »
al »

I
I
I
I
I
|
FunctionljDDDjDDDjDEDDDj

ERN
Function 2 | Food ks I R]
Function 3 FETE = TR T —

It is considered important that computations are completed within the cycle, including slow tasks, and
when a high priority computation has been processed and the CPU is freed up, the computation for the
system with the next priority ranking is performed. If a high priority computation process comes in during a
computation, the low priority computation is aborted and the high priority computation process is executed
first.

10.4.3. Effect of connecting subsystems with sampling differences

If subsystem B with a 20 msec sampling interval uses the output of subsystem A with a 10 msec sampling
interval, the output result of subsystem could change while subsystem B is computing. If values change
during the process, computation results in subsystem B can result in unexpected values. For instance, a
comparison is made in system B’s first computation with the system A output, the result is computed with
the conditional judgment based on this output, and then it is compared again at the last computation in
system B. If the subsystem A output at this point is a different value, it may happen that the logic created
with true, true has become true, false, and an unexpected computation result is generated. To avoid this
type of malfunction, if tasks generally change, output results from subsystem A are fixed immediately
before they are used by subsystem B. In other words, even if subsystem A values change during the
process, the values that subsystem B are looking at is in a different RAM, so no effect is apparent.
When a model is created in Simulink and a subsystem is connected that has a different sampling interval
in Simulink, Simulink automatically reserves the required RAM.

However, if input values are obtained with a different sampling interval through integration with hand-
coded code, the engineer who does the embedding work should design these settings. In the RTW
concept using AUTOSAR, different RAMs are all defined at the receiving and exporting side.

© Copyright 2013 JMAAB. All rights reserved. 245

2msec

8msec

\ 4

1
1
1
10msec :

-
g}

When Function 2 uses computation results
Function 1 i from Function 1, computation results for
Function 2 -1 Function_l do not change during computation
for Functions 2-1, 2-2, 2-3, but there is

g a possibility that Functions 2-1, 2-2, 2-3 use
different values that have been computed on
Function 3 -1 oy the respective different time axes.
-2 < o | ===
gz It is advisable to allot a different RAM for signal
-3 values with a different rate.
-4 T BT
Single-task

Signal values are the same within the same 2 msec cycle, but please note that for different 2 msec cycles
the computation value is different to the preceding one. If Function 2-1 and 2-2 used signal A of Function
1, then 2-1 and 2-2 will be using results from different times, so please be aware.

Multi-task

For multi-task you cannot specify at what point to use the computation result to use. With multi-task,
always store signals for different tasks in a new RAM.

Before new computations are performed within the task, values are all copied in one go.

2msec If Function 2 uses
computation results of
Function 1, there is the
10msec possibility that computation
results from Function 1 will
replace them while

8msec

A\ 4

Y

Function 1 J__.I Y]]] Function 2 is computing.
. [(= e - , For that reason,

Function 2 Do not immediately computation results that
- \5 use values that are vary at the point when

Function 3y Dbeing updated. computation starts for

each rate are generally

Maintain value at the start of the task. stored in a different RAM.

© Copyright 2013 JMAAB. All rights reserved. 246

11.

Simple checking sample program for guidelines

Some guideline rules allows check by setting automatic check with conditions as well as check using
Model Adviser. Here show some sample programs for the method to set automatic check setting.
Model-based development enables reduction of man-hour and product quality improvement using such
automatic correction. It is necessary not only requiring users to keep to established rules but also
improving usability by correcting bugs automatically.

11.1. Check by automatic setting

11.1.1. na_0004: Simulink model appearance settings
Settingltems={...

...% Display option

'ModelBrowserVisibility', ‘off' 'browser display’, ...

'ScreenColor’, ‘white' 'screen color’,...
'StatusBar’, ‘on’ 'status bar',...

‘ToolBar', ‘on', 'toolbar',..

'ZoomFactor', '100' 'zoombar, ...

...% port display option

'ShowPortDataTypes', 'off', 'port data types';...
'ShowLineDimensions', 'off', 'signal dimensions';...
'ShowStorageClass', 'off', 'storage class';...
'ShowTestPointlcons', ‘on', 'testpoint indicator’;...
'ShowsSignalResolutionlcons', ‘'on', 'testpoint indicator’;...
'ShowViewerlcons', ‘on', 'viewer indicator';....
'WideLines', ‘on’, 'display wide lines for non-scalars';...
h

for k=1: size(Settingltems, 1)
set_param(0,Settingltems{k,1},Settingltems{k,2})
set_param(bdroot,Settingltems{k,1},Settingltems{k,2})

end

set_param(O is setting for Simulink. If it is applied, the setting above is inherited to the newly created
model files. The setting is enabled only after it is rerun during Simulink restart. The setting is executed
during Simulink restart by describing it to the startupsl.m file on the path.

To change the settings of existing file, use set_param(bdroot, Settingltems{k,1},Settingltems{k,2}).

Reference: Simulink/modeling/model configuration/block/model parameters

11.1.2. db_0043: Model font and font size

Settingltems={...
...%% font setting
...% block default setting
'DefaultBlockFontName', ‘MS Ul Gothic', ‘default block font name’; ...

'DefaultBlockFontSize', 12, ‘default block font size', ...
'DefaultBlockFontWeight', 'normal’ ‘default block font thickness'; ...
'DefaultBlockFontAngle’, 'normal’, ‘default block font tilt', ...

...% default line font settings
'DefaultLineFontName', 'MS Ul Gothic', ‘default line font name'; ...

'DefaultLineFontSize', 12, ‘default line font size'; ...
'‘DefaultLineFontWeight', ‘normal’, ‘default line font weight'; ...
'DefaultLineFontAngle’, 'normal’, ‘default line font tilt; ...

...% default annotation font settings
'DefaultAnnotationFontName', 'MS Ul Gothic', 'default annotation font name; ...

'DefaultAnnotationFontSize', 14, 'default annotation font size'; ...
'DefaultAnnotationFontWeight', ‘normal’, 'default annotation font weight'; ...
'‘DefaultAnnotationFontAngle’, ‘normal’, ‘default annotation font orientation’; ...
h

for k=1: size(Settingltems,1)
set_param(0,Settingltems{k,1},Settingltems{k,2})
set_param(bdroot,Settingltems{k,1},Settingltems{k,2})
end

© Copyright 2013 JMAAB. All rights reserved. 247

Executing set_param(bdroot, Settingltems{k,1},Settingltems{k,2}) does not change entirely. To change file
content entirely including content manually modified, using find_system is required to search all
information within the model file to change, however, it may change the intendedly modified description.
To avoid this, it is recommended to complete settings in the stage of new creation.

11.1.3. na_0001: Bitwise Stateflow operators

The following is an example of changing the settings of a Stateflow Chart contained in the existing model.

rt = sfroot;
modelH = get_param(bdroot, 'Handle");
rt = rt.find(-isa', 'Simulink.BlockDiagram’, -and', 'handle’, modelH);
result = rt.find('-isa', 'Stateflow.Chart’);
if ~isempty(result)
for n1=1:length(result)
result(n1).EnableBitOps=true;
end
end

© Copyright 2013 JMAAB. Al rights reserved. 248

Update history

m Update time and date

Date Change
02.04.2001 NAMAAB Initial document Release, Version 1.0(Eng)
xX.04-2003 JMAAB Initial document Release,Version 1.0(Jp)

MAAB Version 2.0 Update release(Jp&EngQ)

04.27.2007 This document is a collaboration of JMAAB and NAMAAB.
07.30.2011 Version 2.2 Update release(Eng)

08.31.2012 Version 3.0 Update release(Eng)

05.30.2013 Version 3.0 Japanese localization(Jp)

31.03.2015 Version 4.0 Update release(Jp&EngQ)

19.06.2015 Version 4.01 correct (Jp&EnQ)

12.1. Termination rule

12.1.1. Removed in version 2.2

JM_0013: Annotations: The rule was original written due to a printing bug in R13. The bug was fixed
in R14 SP1.

12.1.2. Removed in version 3.0
No guidelines were removed in version 3.0

12.1.3. Removed in version 3.1
No guidelines were removed in version 3.1

12.1.4. Removed in version 4.0

® Removed after being integrated to another rule or altered
Integration source ID Supporting ID
jc_0221: Sentences that can be used for the name of the signal line jc_0222
na_0030: Sentence that can be used for a Simulink path name

jm_0010: Names of Import block/Outport block na_0005, jc_0082,
jc_0081: *Icon display* of Inport block/Outport Ibock jc_0083

db_0148: Transition condition pattern of the flow chart jc_0742

db_0150: Transition condition pattern of the state

db_0149: Condition action pattern of the flow chart jc_0743

na_0019: Restricted Variable Names jc_0251

® Deleted because it became unnecessary with the recent year's MATLAB version
jc_0541: Usage of adjustable parameter at Stateflow

® Deleted because contents are not rule.

db_0133: Usage of a flow chart pattern
(It is covered by db_0132,jc_0770,jc_0771,db_0134,db_0159 and db_0135)

© Copyright 2013 JMAAB. All rights reserved. 249

12.1.5. Moved to attachment in version 4.0
They were moved to appendix. And their IDs were deleted.

® Since they are not guideline rules but how to think, they were moved to appendix.
db_0040: Hierarchy structure of the model

jc_0301: Controller model

jc_0311: Top layer/root level

jc_0321: Trigger layer

jc_0331: Structure layer

jc_0341: Data flow layer

® Rules which explain functions of Simulink were moved to appendix.
na_0032: Use of merge blocks

jc_0021: Model diagnostic settings

jc_0351: Methods of initialization

® Since rules about development process are not treated in this guidelines, they were moved to
appendix

na_0026: Consistent software environment

na_0027: Use of only standard library blocks

12.2. The flow of the style guideline revision

MAAB NAMAAB
[| | | | | 1 | | | | | | | | | O |
| | I I I I || I | I | J I I 1 1 |}
2001 2003 2007 2010 2013
V1 was formed from the 4 companies of Toyota,
Ford, Daimler, and GM. April 2007 July 2011 August 2012
Then \B and NAMAAB organizations
V1.0 V2.0 [V2.2 I V3.0 V4.0
April 2001 English
: Free
translation .
translatio
JMAAB

April 2003

May 2013

Rule addition
and integration

ProgressioT.
the free
translation

T 1 L
JMAARB started its
activities in April
2001

© Copyright 2013 JMAAB. All rights reserved. 250

