CONTROL ALGORITHM MODELING
GUIDELINES USING MATLAB®,
Simulink®, and Stateflow®

Version 2.2

MathWorks Automotive Advisory Board
(MAAB)
July 30th, 2011

CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, SIMULINK®, AND
STATEFLOW. ..ot e et e e e et e e et e e et e s e et e s e et e et e s e et en e e s es e eesee s e s s esees s e e s e eeteneneens

I o 1 I 1O = 2RSSR
2. INTRODUCTION ...ttt ettt b et et e b s b e b e s be b e st b e s b e se et st s s be st e neene st s

b2 I 1Y, [1Y 7y T N USSR 6
2.2. NOTES ON VERSION 2.2.....eiiteeiteeiteate st aieesteasteasteesteestessaessesssessaessseeseanseassesseesbeesbeesbessbeesseansesnsesneenseenes 6
2.3, GUIDELINE TEMPLATE 11iiuttettttittesteeiteesstesassesatesassessssssansesassssasssesssssessssessssassesessssessssessseesssesssseesssesssns 6
2.3.1. GUIAEHINE ID k. ittt ettt ettt st sbe e be et e e st e eabeebbesbaesbeesbeestesntesnseabeenbeenns 7
2.3.2. GUIAEHINE THEI: uiuiiitiictie ettt ettt s be s be et e e st e e abeebaesbeesbeesbeesteentesnsesaeenbeenns 7

P TR T o o] 4 1TSS PRSP RPTPR 7
R 1o oL TSP PO PP S PR PRPRTPR 8
2.3.5. MATLAB® VEISIONSoooovvvoiesaiisssisses st 8

B T =T o [V (1SS 8
R I - od o] [8
2.3.8. RALIONAIE: ...ttt bbb bbbt nre s 9
G R I 1 Ao T o < S 9
2.4, DOCUMENT USAGE-......cutitiittitiateeitetie it sttt ettt et sttt st sb et nb e eb ekt b e e bt e be e st e e e eb e s beebe et e e e e s beneearenbeaneas 9
2.4.1. Guideling INteraction SEMANTICS........ccuiiiiiriieireese et nes 9

. NAMING CONVENTIONS ...ttt ettt ettt a st bbb eneneenes 10
3.1, GENERAL GUIDELINESvttitieiteesteeiteasteasteasaeassesseesseesseasseassessaesseessesssessseasseansesssesssesssesssnssesssesssesssesnes 10
3.1.1. Ar_0001: FIlENAMES.......ocuiitiieiiiieiieieete ettt ettt bbbttt sb ettt b e et abe et ebenr et e b e 10
3.1.2. ar_0002: DIr€CLONY NAIMES......c.eiteeeieitereeteateseeteatesteeeseseeseetesse e ebesbe b e bt abe st ebeabeseebeabeseebearesreseabennas 10
3.2. MODEL CONTENT GUIDELINESceitttittittauteaueesteesteesteesteestesseesseessesssessseesseesseessesssesssessesssesssesssesssesnses 11
3.2.1. jc_0201: Usable characters for SUBSYSTEM NAMEccovviieiiiriieiie e 11
3.2.2. jc_0211: Usable characters for Inport block and Outport blOcK ..., 12
3.2.3. jc_0221: Usable characters for signal liNe NAME...........ccvireiiiriiiiiese e 12
3.2.4. jc_0231: Usable characters for BIoCK NAMESccccvviiiiiiiiciie e 13
3.2.5. na_0014: Use of local language in Simulink and Stateflowcccccvvreiiinciiieici s 13

. MODEL ARCHITECTURE.......cct ittt ne st asentenes 16
4.1. SIMULINK® AND STATEFLOW® PARTITIONINGvvurveverereessesssssesessssesssessessssssassossssssssssssssssnssanes 16
4.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow...........c.cccceceviiiiiiiiicievccc e, 16
4.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines........................ 22
4.2. SUBSYSTEM HIERARCHIES.....cutitiitieieiutestestestt sttt sttt se e ss e bbb st e s e e e b e b bt et e e s en e nneanenbeane s 22
4.2.1. db_0143: Similar block types on the model [eVelS...........ccoovrviviiiiiiiiece e 22
4.2.2.db_0144: USE Of SUDSYSIEMSeveveiieieitcsece ettt ettt sne e e nenaeseenrenns 24
4.2.3. db_0040: MOUEl NIEFAICRYc.ecvieiie et sresreens 25
4.3. J-MAAB MODEL ARCHITECTURE DECOMPOSITIONc.utitiiieiieienretestesteaseesieseessessesnesseseesseseesnessessens 25
4.3.1. jc_0301: CoNtroller MOUENcveiviieieiiceceee s sresreens 25
4.3.2.jc_0311: TOP layer / TOOL IEVENocveieciieece e 26
T T o 01 2 R I g T o T=Y - Y 27
B ol O T R {0 (o1 (0 (= - 1Y S 27
4.3.5.JC_0341: Data fIOW QYNccvcieieie ettt et reens 28

. MODEL CONFIGURATION OPTIONSootititiieisieiei ettt nnenes 30
5.1.1. jc_0011: Optimization parameters for Boolean data typesS.........covvrvererenereninieenenesese e 30
5.1.2. jc_0021: Model diagnoStiC SEIINGScvivirieiiteriiieie et 30
CSIMULINK Lttt ettt sttt s bt e te et e e et et et e s e e b e e e s s e b et es s et et en b n e st et nenrenee 32
5. 1. DIAGRAM APPEARANCEutitiittatteuteiteatesteaseaseetestesseabesbeaseaseaseasseabeabe e bt et e eseenbesbeabenbeabeabee s enbenbesbenbe e 32
6.1.1. na_0004: Simulink Model apPEAraNCEciviireiiirieiee et 32
6.1.2. db_0043: Simulink font and fONE SIZE..........coeeiiiiiiiiec e e 33

6.1.3. db_0042: Port block in SImulink Models...........cccoeiiiiiiciii e 34

6.1.4. na_0005: Port block name visibility in SImulink models............ccoooeiiiniiniecee 35

6.1.5. jc_0081: Icon display for POrt BIOCKccccoiiiiiiiiiiie e 35
6.1.6. JM_0002: BIOCK FESIZINGveveiiiterieiiitirieiiite ettt bbbt b e et sb e sr e ebe e 36
6.1.7. db_0142: Position of DIOCK NAMES..........ciiiiiiiie e 37
6.1.8. jc_0061: Display Of DIOCK NAMES.........coeiiiriiiieieere e 38
6.1.9. db_0146: Triggered, enabled, conditional SUBSYSIEMScccoviriiieiereie e 38
6.1.10. db_0140: Display of basic bloCK Parameters ..o 39
6.1.11. db_0032: Simulink Signal PPEAraNCEccceriiiririeiee et 40
6.1.12. db_0141: Signal flow in SIMUlINK MOEIS.........ccceriiiriiiiiieeese e 41
6.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks...........ccccoevvviviieiiiinnnnns 41
6.1.14. jm_0010: Port block names in SImulink MOdelS...........cccocvveriiiieiniii e 42
6.1.15. jc_0281: Naming of Trigger Port block and Enable Port blocK.............cccvvvveiiiiiciniciciinnnns 43
5.2, SIGNALS ...ttt bR bbb 44
6.2.1. na_0008: Display of [abels 0N SIGNAIS...........ccoviiiiiiiiiiiisise e 44
6.2.2. na_0009: Entry versus propagation of signal [abels..............cccooiiii e 45
6.2.3. db_0097: Position of labels for signals and DUSSES..........cocooiiiiiiiniii e 46
6.2.4. db_0081: Unconnected signals, block inputs and block OULPULSccoeiiiiiininiiiic e 46
5.3, BLOCK USAGE ..ottt bbb bbb r bbb er e 47
6.3.1. na_0003: Simple logical expressions in If Condition BIOCKcccoveriiinineiiiciceie 47
6.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations......... 48
6.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers............cccocovviiieicinninnncns 49
6.3.4. hd_0001: Prohibited SIMUINK SINKS..........c.coeiiiiiiiiiiee e e 51
6.3.5. na_0011: Scope of Goto and From BIOCKS ...t 52
6.3.6. jc_0141: Use of the SWItCh DIOCK.........cceiiiiiiiiccee e 52
6.3.7.jc_0121: Use of the SUM DIOCKcoiiiiiiiiiiii e 54
6.3.8. jc_0131: Use of Relational Operator DIOCK............cociiiiiiiiiiiicee e 55
6.3.9. jc_0161: Use of Data Store Read/Write/Memory BlOCKS..........ccccveviiiieiii e 55
6.4. BLOCK PARAMETERS......ctvtitititiieitinstseasessese st sse st s s st ne et nn et r e b e r s et b n et b n et nee e 56
B.4.1. AD_0L12: INAEXING . ..eiteeereiteieieiteiieeste sttt st e ete sttt e et b e ebesbe st etesbe st etesbeseebeabeseesenbeseerenbeneas 56
6.4.2. na_0010: Grouping data flows int0 SIGNAISccceciiiriiiieic e 56
6.4.3. db_0110: Tunable parameters in basic DIOCKSccoviiiiiiciiie e 57
6.5, SIMULINK PATTERNS ..ottt bbb bbb bbb se e 58
6.5.1. na_0012: Use of Switch vs. If-Then-Else Action SUBSYStEM.........ccooveivviiciiiiieii e 58
6.5.2. db_0114: Simulink patterns for If-then-else-if CONSLIUCESccvverieiiiirciiii e 59
6.5.3. db_0115: Simulink patterns for Case CONSIIUCES.........ccoiririierieise e 60
6.5.4. db_0116: Simulink patterns for logical constructs with logical blOcksSccccoevreiiiiiiiinnnnns 61
6.5.5. db_0117: Simulink patterns for VeCtor SIgNalS...........ccceeiiiiiiie i 62
6.5.6. jc_0351: Methods Of INItIAlIZAtION..........coiiieie e e 64
6.5.7. jc_0111: Direction Of SUDSYSTEMccuiiiiiiieieie sttt e sne s 65
T STATERFLOW. ..ottt bbb bbb bt £ bbb bt e b bt bk e st et e ettt et 67
7. L. CHART APPEARANCEotitiiiitiriteatenrtses e sse et se e s st a et s e nae e bt nn et s e bt nr s et e b r et nr e n e e nrns 67
7.1.1. db_0123: Stateflow POIt NAMEScciieeeceee e sr e nne s 67
7.1.2. db_0129: Stateflow transition @pPPEAranCe...........ccvcvriveieieierese s sresne s 67
7.1.3. db_0137: States in State MAChINES.........ccccveiereie e ere s 69
7.1.4.db _0133: Use of patterns for FIOWChAItS............cccccivieeiiiiii e 69
7.1.5. db_0132: Transitions in FIOWCHAITS...........cccciiiiiiiiece e 69
7.1.6. jc_0501: Format of entries in @ State bIOCK.............ccvevveieiiiiic e 71
7.1.7. jc_0511: Setting the return value from a graphical function..........c..ccccccociiiiiinicii s 72
7.1.8. jc_0531: Placement of the default tranSition.............cccoeriiieiiiiiici e 73
7.1.9. jc_0521: Use of the return value from graphical funCtions............c.cccvereiininiinicienee 74
7.2. STATEFLOW DATA AND OPERATIONS ..ceuttitttiteesteesteesteesteestesseesseessesssessseasseansesnsesssesssessssssesssesssesssesnees 75
7.2.1. na_0001: Bitwise Stateflow OPErators.coeiiiiiiiiiricisiese e 75
7.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow...........ccoceoviiviiiciiiiiincnns 76
7.2.3. na_0013: Comparison operation in Stateflow............ccocooiiiiiiiiiiiii s 76

7.2.4.db_0122: Stateflow and Simulink interface signals and parameters...........c.ccoceevvervienieneinennns 77

7.2.5. db_0125: Scope of internal signals and local auxiliary variables ..o 78

7.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow 79
7.2.7. jc_0491: Reuse of variables within a single Stateflow SCOPEcccvvvreiniiciiciciee 80
7.2.8. jc_0541: Use of tunable parameters in Stateflow...........c.coveiiiiiniiiic s 82
7.2.9.db_0127: MATLAB commands in Stateflow ... 82
7.2.10. jm_0011: Pointers in SateflOWc.coviiiiiiiiice e 83

AR T o= N TSP 84
7.3.1. dD_0126: SCOPE OF BVENESeceiieiiieiiite ettt ettt b e et sb e et sbenr e ebe e 84
7.3.2. JM_0012: EVENE DrOAUCASTSc.eiveieiiiteieeieciereee ettt 84

7.4, STATECHART PATTERNS ..ottt bbb bbb e 86
7.4.1. db_0150: State machine patterns for CONAItIONSccvvviieririiieieise e 86
7.4.2.db_0151: State machine patterns for transition aCtionS............ccccvveveiinereieneneiese e 87

7.5, FLOWCHART PATTERNS .. .ottt ittt sttt s bbb bbbt se e sn e 88
7.5.1. db_0148: Flowchart patterns for CONAItIONScocoovvirieiieisiie e 88
7.5.2. db_0149: Flowchart patterns for condition aCtionscccooeiiiirienie s 90
7.5.3. db_0134: Flowchart patterns for If CONSIIUCES.........oieeiiiiiiiii e 91
7.5.4. db_0159: Flowchart patterns for Case CONSTIUCEScc.oiirirereiiniee e e 92
7.5.5. db_0135: Flowchart patterns for 100 CONSTIUCEScccooiuiiiriiiiineee e 94

8. APPENDIX A: RECOMMENDATIONS FOR AUTOMATION TOOLSc.coiiiiiiinieensie e, 96
9. APPENDIX B: GUIDELINE WRITING ..ottt 97
10. APPENDIX C: FLOWCHART REFERENCE ..o 98
11. OBSOLETE RULES ...ttt 104
11.1. REMOVED IN VERSION 2.2oitiiiititeieeieireneeesnesre et sr e eeresne e enesne et ane et an et an e s an e e b e enenn e enennas 104

12. GLOSSARY ..ttt r 105

1.History

Date
02.04.2001
04.27.2007
XX XX XX
07.30.2011

Change
Initial document Release, Version 1.00
Version 2.00 Update release
Version 2.10 Update release
Version 2.20 Update release

2.Introduction

2.1. Motivation

The MAAB guidelines are an important basis for project success and teamwork - both in-house
and when cooperating with partners or subcontractors. Observing the guidelines is one key
prerequisite to achieving
e System integration without problems
Well-defined interfaces.
Uniform appearance of models, code and documentation
Reusable models
Readable models
Problem-free exchange of models
A simple, effective process
Professional documentation
Understandable presentations
Fast software changes
Cooperation with subcontractors
Handing over of (research or predevelopment) projects (to product development)

2.2. Notes on version 2.2

The current version of this document, 2.2, supports MATLAB releases R2007b through R2010b.
Some functionality outside this range is covered in the guidelines. These cases are specifically
called out in the guidelines.

Version 2.2 of the MAAB Style Guide does not provide guidelines for the use of Model or
MATLAB Function blocks (formerly referred to as Model Reference and Embedded MATLAB
blocks, respectively).

However, several of the updated guidelines provide information for using Model or MATLAB
blocks, if internal company guidelines support their use.

The future version of the MAAB guidelines will address the use of Model and MATLAB function
blocks.

2.3. Guideline template

Guidelines are described with the following template. Companies who wish to create additional
guidelines are encouraged to use the template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority One of mandatory / strongly recommended / recommended

Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for optional local company usage)
all

MATLAB® o o corier
RX and later

RX through RY
Prerequisites |Links to guidelines, which are prerequisite to this guideline (ID+title)
Description |Description of the guideline (text, images)

Rationale Motivation for the guideline
Last Change |Version number of last change

Note: The elements of this template are the minimum required items that must be present for
proper understanding and exchange of guidelines. The addition of project- or vendor fields to this
template is possible as long as their meaning does not overlap with any of the existing fields. In
fact, such additions are even encouraged if they help to integrate other guideline templates and
lead to a wider acceptance of the core template itself.

2.3.1. Guideline ID:

The guideline ID is built out of two lowercase letters (representing the origin of the rule) and a
four-digit number, separated by an underscore.

Once a new guideline has an ID, the ID will not be changed.

The ID is used for references to guidelines.

The two letter prefixes na, jp, jc and eu are reserved for future MAAB committee rules. Legacy
prefixes, db, jm, hd, and ar, are reserved. No new rules will be written with these legacy
prefixes.

2.3.2. Guideline Title:

The title should be a short, but unique description of the guidelines area of application (e.g.,
length of names).

The title is used for the "prerequisites”-field and for custom checker-tools.

There should be a hyperlink with the title-text. It is used for links to the guideline.

Note: The title should not be a redundant short description of the guidelines content, because
while the latter may change over time, the title should remain stable.

2.3.3. Priority:

Each guideline must be rated with one of these priorities "mandatory”, "strongly recommended" or
"recommended." The priority not only describes the importance of the guideline but also
determines the consequences of violations.

Strongly
Recommended

DEFINITION

Mandatory Recommended

e Guidelines that all
companies agree to
that are absolutely
essential

e Guidelines that all
companies conform to
100%

Guidelines that are
agreed upon to be a
good practice, but
legacy models
preclude a company
from conforming to
the guideline 100%
Models should
conform to these
guidelines to the
greatest extent
possible; however
100% compliance is
not required

Guidelines that are
recommended to
improve the
appearance of the
model diagram, but
are not critical to
running the model
Guidelines where
conformance is
preferred, but not
required

CONSEQUENCES

If the guideline is violated

e Essential things are e The quality and the e The appearance will
missing appearance not conform with

e The model might not deteriorates other projects
work properly e There may be an

adverse effect on
maintainability,
portability, and
reusability

WAIVER POLICY

If the guideline is intentionally ignored,

e The reasons must be
documented

2.3.4. Scope:

The scope can be set to one of the following
MAAB (MathWorks Automotive Advisory Board)
J-MAAB (Japan MAAB)

NA-MAAB (North American MAAB)

"MAAB" is a group of automotive manufacturers and suppliers that work closely together with
MathWorks. MAAB includes the sub-groups J-MAAB, and NA-MAAB.

“J-MAAB?” is a subgroup of MAAB that includes automotive manufacturers and suppliers in
JAPAN and works closely with MathWorks. Rules with J-MAAB scope are local to Japan.

“‘NA-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in USA
and Europe and works closely with MathWorks. That rule is local rule in USA and Europe.
Coverage is USA and Europe.

2.3.5. MATLAB® Versions

The guidelines support all versions of MATLAB and Simulink products. If the rule applies to a
specific version or versions, the versions are identified in the MATLAB versions field. The
versions information is in one of the following formats.
e All: All versions of MATLAB
RX, RY, RZ : A specific version of MATLAB
RX and earlier : Versions of MATLAB until version RX
RX and later: Versions of MATLAB from version RX to the current version
RX through RY: Versions of MATLAB between RX and RY

2.3.6. Prerequisites:

This field is for links to other guidelines that are prerequisite to this guideline (logical conjunction).
Use the guideline ID (for consistency) and the title (for readability) have to be used for the links.
The "Prerequisites” field should not contain any other text.

2.3.7. Description:

The "Description” field contains a detailed description of the guideline.
If needed, images and tables can be added.

Note: If formal notation (math, regular expression, syntax diagrams, and exact numbers/limits) is
available, it should be used to unambiguously describe a guideline and specify an automated
check. However, a human, understandable, informal description must always be provided for
daily reference.

2.3.8. Rationale:
The guidelines can be recommended for one or more of the following reasons.

e Readability: Easily understood algorithms
e Readable models
e Uniform appearance of models, code, and documentation
e Clean interfaces
e Professional documentation
o Workflow: Effective Development Process/W orkflow
e Ease of maintenance
e Rapid model changes
e Reusable components
e Problem-free exchange of models
e Model portability
e Simulation: Efficient Simulation and Analysis
e Simulation speed
e Simulation memory
e Model instrumentation
o Verification & Validation
e Requirements Traceability
e Testing
e Problem-free system integration
e Clean interfaces
e Code generation: Efficient/effective embedded code generation
e Fast software changes
¢ Robustness of generated code

2.3.9. Last change:
The “Last Change” field contains the document version number.

2.4. Document Usage

The following paragraphs give some directions on using this document for reference and for
compiling a project-specific guideline document. Information on automated checking of the
guidelines can be found in Appendix A.

2.4.1. Guideline Interaction Semantics

The initial sections of the document, naming conventions and model architecture, provide basic
guidelines that apply to all types of models. The later sections, Simulink and Stateflow provide
specific rules for those environments. Some guidelines are dependent on other guidelines and
are explicitly listed throughout the template.

3.Naming Conventions

3.1. General Guidelines

3.1.1. ar_0001: Filenames

ID: Title ar_0001: Filenames
Priority Mandatory

Scope MAAB

MAT.LAB All

Version

Prerequisites
A filename conforms to the following constraints:

FORM filename = name.extension
name: no leading digits, no blanks
extension: no blanks

UNIQUENESS |all filenames within the parent project directory

ALLOWED name
CHARACTERS |abcdefghijklmnopqrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789 _
extension:
Description abcdefghijklmnopqgrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789

UNDERSCORES name:

e can use underscores to separate parts
e cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore
extension:

e should not use underscores

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
[0 Simulation

Last Change |V1.00

3.1.2. ar_0002: Directory names

ID: Title ar_0002: Directory names
Priority mandatory

Scope MAAB

MATLAB All

Version

Prerequisites
Description |A directory name conforms to the following constraints:

FORM directory name = name
name: no leading digits, no blanks

UNIQUENESS |all directory names within the parent project directory

ALLOWED name:
CHARACTERS |abcdefghijklmnopgrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789 _

UNDERSCORES |name:

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change |V1.00

3.2. Model Content Guidelines

3.2.1. jc_0201: Usable characters for Subsystem name

ID: Title jc_0201: Usable characters for Subsystem names
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

The names of all Subsystem blocks should conform to the following constraints:
FORM name:

e should not start with a number

e should not have blank spaces

e should not have carriage returns

ALLOWED name:
CHARACTERS |abcdefghijklmnopqrstuvwxyz

Description ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _
UNDERSCORES |name:
e underscores can be used to separate parts
e cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

3.2.2. jc_0211: Usable characters for Inport block and Outport block
ID: Title jc_0211: Usable characters for Inport block and Outport block

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

The names of all Inport blocks and Outport blocks should conform to the following
constraints:

FORM name:
e should not start with a number
e should not have blank spaces
e should not include carriage returns

ALLOWED name:
Description ||[CHARACTERS |abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES |name:

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.2

3.2.3. jc_0221: Usable characters for signal line name

ID: Title jc_0221: Usable characters for signal line names
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites
All named signals should conform to the following constraints:

FORM name:
e should not start with a number
e should not have blank spaces
- e should not have any control characters
Description e should not include carriage returns

ALLOWED name:

CHARACTERS |abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES |name:

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.2

3.2.4. jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites |jc_0201: Usable characters for Subsystem names

All named blocks should conform to the following constraints:

FORM name:
e should not start with a number
e should not start with a blank space
e may not use double byte characters
Description e carriage returns are allowed
ALLOWED name:
CHARACTERS |abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _
Note: this rule does not apply to Subsystem blocks.
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.0

3.2.5. na_0014: Use of local language in Simulink and Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow
Priority strongly recommended

Scope J-MAAB

MATLAB All

Version

Prerequisites

The local language should be used only in descriptive fields. Descriptive fields are
text entry points that do not affect code generation or simulation. Examples of
descriptive fields include

Simulink Example
e The Description field in the Block Properties

ck Propertie

General “ Block Annotation || Callbacks |

Uzaee

Dezcription: Text saved with the block in the model file.

Priority. Specifies the block's order of execution relative to other blocks in the
zame model.

Tae: Text that appearz in the block label that Simulink generates.

Dezcription:

Local language can be uzed. ﬂ

e Text annotation directly entered in the model
O dE| 2R~ 40

Description: Local language can be used.

Description

Outl In1

b4

Out2

Y

InZ

Stateflow Example
e The Description field of the chart or state Properties

1'/
State w
Mame: State

Parent: ichart! SF sample/Chart?
: [State During [~ State Entry [~ State Exit

I_ Qutput State Activity

Description:

Local language can be uzed.

Document Linkl

oK I Cancel | Help | Apply

e Annotation description added using Add Note

Local language can be used

[condition]

Add Mote 2

i)
e
Faste

Back |

{action}

Note: It is possible that Simulink can’t open a model that includes local language
on the different character encoding systems; thus, it is important to pay attention
when using local characters in case of exchanging models between overseas.

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change (V2.0

4 .Model Architecture

Basic Blocks
This document uses the term “Basic Blocks” to refer to blocks from the base Simulink library;
examples of basic blocks are shown below.

(‘D; 1 B D} : 2 r|‘\\—;~ - [u] E

In1 iZonstant Gain Sum — Saturation Abs
awitch

4.1. Simulink® and Stateflow® Partitioning

4.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Description

The choice of whether to use Simulink or Stateflow to model a given portion of the
control algorithm functionality should be driven by the nature of the behavior being
modeled.
e |f the function primarily involves complicated logical operations, Stateflow
should be used.
o Stateflow should be used to implement modal logic — where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.
e If the function primarily involves numerical operations, Simulink should be
used.

Specifics:
¢ If the primary nature of the function is logical, but some simple numerical
calculations are done to support the logic, it is preferable to implement the
simple numerical functions using the Stateflow action language.

) Stateflow {subchart) na0D06part1 /Chart.¥ehicleSk - | Ellll
£

Fil=: Edt Yiew Simulation Tools Add Help

sHE i n@|c=> 4|2 >r 1 o= |EeE|
=

_I /FrontAxIeActivat\onCounter \

g)

[DeActivationCond] T l [ActivationCond]

Activated
entry: ActivationCt = ActivationCt + 1;

S

Embedded simple
/—/ math operation

p BB E E [#|c e

=
=]
4

4
p

7

=
=]
=
[}

o If the primary nature of the function is numerical, but some simple logical
operations are done to support the arithmetic, it is preferable to implement
the simple logical functions within Simulink.

E!nal]l]l]EpartZ,.w"...,.-"Suhsystem,.-"Suhsystem o - |D|5|
File Edit WYew Smulation Format Tools Help

D2 &| 4@ e d|< 2 » =hooo [vom =

Ready [100% [\ |\ |FixedstepDiscrete v

Embedded simple
logic operations

e |f the primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, a Simulink
subsystem should be used to implement the numerical calculations.
Stateflow should invoke the execution of this subsystem using a function-

call.
.} Stateflow (subchart) CallSLFromSF_Trans_gfZ/Cha =] 3]
File Edit Yiew Simulation Tools Add Help A
IR L IR AT

mprTb\leltTrap

{Thl_In1=ut;. .
Thl_InZ =uz; .
Wy ThILKUpFC;}

~

[1]

|Ready

E!EaIISLFromSF_Trans_g[Z o
File Edit WYew Smulation Format Tools Help

=10l

DIBEHE| s+ BB ¢ (9 r sfor | BB REBEE

(B~ |
<MyTbiLkUpFCs |
/ |
T wei——{ 1) !
ul <yt *
unctien(]
2 —muz Thi_In1 o in
uz <Thi_In1>
Outt
<Thl_Out=
Ke_CalFactorlpr Ke_CalFacterpr Tol_in2 »i
<Thi_In2>
MyTbILkUp FC Subsys
] ThI_ut Wy ThILKLIpFE |— - — - — - [4]
- <MyTbILkUpF
Chart

Ready

100%

|FixedstepDiscrete

Lo x
File Edit Wiew Simulstion Tools Add Help £
IR IS A I
{ThiCalc N©
@
Bl (o
car entry: wsf = 0
@
l [ThICalciZond] T[Reaetcond]
Cp
during Thl_In1 =u1,;
ﬁ Thl_In2 =u2;. .
A 4 Wy ThILKUpFC; ...
ysf=uf;
. S
4 |+
|Move
-0l x]

File Edt Miew Simulation Format Tools Help

OEE&E|fE@|es ¢ 5fion [Nomd v 5 @S| bl

D e
|
b
Tl e M
ul
funition [}
Tbl_In1 {in1
I T =
e ot |—— (D)
uz2 <yThl>
Thl_In2 2l
| <ThI _In2= v
Ke_CalFactorpr Ke_GalFactorlpr porierc|— . MyTBILkLp FC Subsys
<MyThILKUpFC> |
e E— U I
oo w0]
Ready [100% [[[FixedStepDiscrete Y

o Stateflow should be used to implement modal logic — where the control
function to be performed at the current time depends on a combination of
past and present logical conditions. (If there is a need to store the result of
a logical condition test in Simulink, for example, by storing a flag, this is
one indicator of the presence of modal logic — that would be better
modeled in Stateflow.)

Incorrect

nal006parte,SL Implementation - | Ellll

File Edit ‘Yiew Simulation Format Taools Help

DID’“H@\%EI@%?\QG DIISUU INormaI '”@

if(ut)
else

1

=

Merge | e W)

LinRngFlag NLRngFlag

Ready 100% [[|FixedstepDiscrete 4

a0006part6,sL Implementak =] 5[
File Edit Wew Simulation Format Tools Help

D& BB E 4|2

- =Jr

Lookup Table

F[100% [[|FixedstepDiscret 2

Correct
E! nal006part6,/SF Implementation * ;IEI ll

Flle Edit Yew Simulation Format Tools Help

DEE& t@cod(nc|r o o C|BeEBDS

TR i | UnTeNLThrshCand LinRngfC|— - — - — - — - — *

@

e congy P HLTeLnThrshCond NLRngF & |— -

Funationty

LinRng FunctionCall

Merge | e)

Merge

Yy

Chartt

Funationty

<ActuatorSignalr

NLRng Funetiontall
Subsystem

Ready 100%: I [|FixedstepDiscrete v

) Stateflow (chart) naD006parts,/SF Implementation,/Chart 1 _1o[x|

Fle Edt Wiew Smulation Took Add Help

FEHE |t B e 2@ 0 = BeE|B
; (=

LinearRange
en: LinkngFC;
du: LinRngFC;

[NLToLmThrshCond]T l[LmToNLThrshCond}

NonlinearRange
en: NLRngFC;
du: NLRngFC;

b BB EE|e 8]

El

1]

4
\;‘

|Ready

e Simulink should be used to implement numerical expressions containing
continuously-valued states, e.g., difference equations, integrals,
derivatives, and filters.

Incorrect
ioixl
File Edit Vew Srulstion Tools Add Help ~
IR IR -]
5] i
function vk = LPF(LPF_Coef u Enable Reset ResetValue)

9

EI [Resef] {yk = ResstValue}

va 1

2] -

Enable] fvk = vkm1 + LPF_Coef® km1

nable] fvk = vkm1 + oaf™(U - vkm

1[[vk =y ! - yken 1

2

!I tyk = ykm 1}

|

P N

100

= {ykm 1 = yh}

=
K| |
\ Create Super-Transition

Correct
E!untitledl,«"Digital Lowpass Reset Enabled * - | Ellzl

File Edit Yew Smulstion Format Tools Help

DSEE& $ER|E= 2|22 p oo [Nond || 5@ @

o D
b
B
et
Ly "]
[e
yhm1 I;I"
Ready [to0%s [[|ode4s G
M Readability M Verification and Validation
Rationale M Workflow M Code Generation

M Simulation

|Last Change |V2.0

4.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites |na_0006: Guidelines for Mixed use of Simulink and Stateflow

Within Stateflow, the choice of whether to utilize a flow chart or a state chart to
model a given portion of the control algorithm functionality should be driven by the
nature of the behavior being modeled.
o |If the primary nature of the function segment is to calculate modes of
operation or discrete-valued states, then state charts should be used.
Some examples are a diagnostic model with pass, fail, abort, and conflict
states, or a model that calculates different modes of operation for a control
algorithm.
e |f the primary nature of the function segment involves if-then-else
statements, then flowcharts or truth tables should be used.

Description

Specifics:

e |f the primary nature of the function segment is to calculate modes or
states, but if-then-else statements are required, it is recommended that a
flow chart be added to a state within the state chart. (refer to 7.5 Flowchart
Patterns)

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V2.0

4.2. Subsystem Hierarchies

4.2.1. db_0143: Similar block types on the model levels

ID: Title db_0143: Similar block types on the model levels
Priority strongly recommended

Scope NA-MAAB

MATLAB

Version Al

Prerequisites

To allow partitioning of the model into discreet units, every level of a model must be

designed with building blocks of the same type (i.e. only Subsystem or only basic

blocks). The blocks listed in this rule are used for signal routing. You can place
Description [them at any level of the model.

Blocks which can be placed on every model level:

Inport

Outport

Mux

Demux

Bus Selector

Bus Creator

Selector -

Ground

Terminator

From Al

Goto Al

Merge Merge |

) 1

Unit Delay S f
|

Rate Transition —++F

[m (m
Data Type Conversion Convert

Data Store Memory DSM

ifful =0} p
If ")
sk B
case [T
Case ul
default: |
Function-Call Generator fll p

Function-Call Split

Trigger”

ENSRES

Enable®

Action port® Action

1.) Starting in R2009a, the Trigger block is allowed at the root level of the

model.
2.) Starting in R2011b, the Enabled block is allowed at the root level of the
model.
Note 3.) Action ports are not allowed at the root level of a model.
If the Trigger or Enable blocks are placed at the root level of the model, then the
model will not simulate in a standalone mode. The model must be referenced
using the Model block.
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

0 Simulation
Last Change V2.2

4.2.2. db_0144: Use of Subsystems
ID: Title db_0144: Use of Subsystems

Priority strongly recommended
Scope MAAB

MAT_LAB All

Version

Prerequisites

Blocks in a Simulink diagram should be grouped together into subsystems based
Description |on functional decomposition of the algorithm, or portion thereof, represented in the
diagram.

Rationale

Last Change

Grouping blocks into subsystems primatrily for the purpose of saving space in the
diagram should be avoided. Each subsystem in the diagram should represent a
unit of functionality required to accomplish the purpose of the model or submodel.
Blocks can also be grouped together based on behavioral variants or timing.

If creation of a subsystem is required for readability issues, then a virtual
subsystem should be used.

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

V2.2

4.2.3. db_0040: Model hierarchy

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

db_0040: Model hierarchy
strongly recommended
MAAB

All

The model hierarchy should correspond to the functional structure of the control
system.

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

V2.0

4.3. J-MAAB Model Architecture Decomposition

4.3.1. jc_0301: Controller model

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

jc_0301: Controller model
mandatory
J-MAAB

All

Control models are organized using the following hierarchical structure. Details on
each layer are provided in the latter rules.

Top layer / root level
Trigger layer
Structure layer

Data flow layer

Use of the Trigger level is optional. In the diagram below “Type A” shows the use
of a trigger level while “Type B“ shows a model without a trigger level.

TypeA TypeB

E—p EB—p
E—p |.> Top Layer [—p
a2 Bt %
EVENT 8ms Tngger
....... Layer

O O ([Osfipor O ‘\B—it.|»-_>
o> 0| |o> JA < Ne._ 5

...... Describe a i)rocessiﬁg timing

Structure Layer

EVENT
EVENT
ams v —bor b
> g 4
 — Data Flow 11—
j++m > Lalyer j¢ E}D*D*
O Readability O Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.0

4.3.2. jc_0311: Top layer / root level
ID: Title jc_0311: Top layer / root level

Priority mandatory
Scope J-MAAB
MATLAB All

Version

Prerequisites

Items to describe in a top layer are as follows.

e Overview: Explanation of model feature overview
e |nput: Input variables

e Output: Output variables

¢ ==
|_DfsEr|Et|_on._*j*:**:**:**_***_* ,l\ Describe the outline of the function

P D e s P A b
., 1 1
Desctiption [ttt oyt L foutputt] |
| |
! Input2 ! |
| I outputz——+{outputz] 1
I '"P“t3 I :
| (gt |——sfmpues QUS| foutputs]
R l\ ControllerA (S \
Input Output
Top Layer Example
O Readability O Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.0

4.3.3. jc_0321: Trigger layer

ID: Title jc_0321: Trigger layer
Priority mandatory

Scope J-MAAB

MATLAB All

Version

Prerequisites

A trigger layer indicates the processing timing by using Triggered Subsystem or

Function-Call Subsystem.

e The blocks should set Priority if needed.

e The priority value must be displayed as a Block Annotation. The user should be
able to understand the priority based order without having to open the block.

Description EventA EventB Task4ms Task2ms
£ EN £ EN

TimingA_function TimingB_function Task4ms_function Task2ms_function

Priority =1 Priority =2 Priority =3 Priority =4
Trigger Layer Example
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.0

4.3.4. jc_0331: Structure layer
ID: Title jc_0331: Structure layer

Priority mandatory
Scope J-MAAB
MATLAB All

Version

Prerequisites

[N

. Describe a structure layer like the following description example.
In case of Type B, specify sample time at a Inport block or a Subsystem to
define task time of the Subsystem.
In case of Type B, use a Block Annotation at an Inport block or a Subsystem
and display sample time to clarify task time of the Subsystem

2. Subsystem of a structure layer should be Atomic Subsystem.

Description

Task2ms
Inputi
Inputi Locall
Input2
Input2
Component_B ol ocalt
Local2 »Local2z Output2 —@
{3 —+Input3 Output?
Input3 Local3 HLocal3
Component_F Component_H

Structured Layer Example (Type A: No description of processing timing)

o
Input3
<tsample=0.002> EventB EventA
—>|Input31f‘_
Input3 Local®
Local10—+»Locall0
2 Inputd Component_K
Input4 <tsample=-1> Local®
<tsample=0.004> Component_l
<tsample=-1> w»Locall0
Output3 |—m :)
Local11 »Localll P Output3
Input4
Local12 »Locall2
Component_J Component_L
<tsample=0.004> <tsample=0.002>
Structured Layer Example (Type B: Description of processing timing)
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.0

4.3.5. jc_0341: Data flow layer
ID: Title jc_0341: Data flow layer

Priority mandatory
Scope J-MAAB
MAT.LAB All

Version

Prerequisites

Describe a data flow layer as in the following example.
Description |e In case of Type A, use a Block Annotation at an Inport block and display its
sample time to clarify execution timing of the signal

Unnecessary display in TypeA.

A
- Locall _
<tsample=0.002>
e o - - J
2D >
Local2

<tsample=0.002>

Sublnput SubOutput

SubComponent Amap

32

Local3
<tsample=0.002>

O Readability
Rationale M Workflow
O Simulation

Last Change V2.0

-;{Z'—r : cmap

Emap
Data Flow Layer Example

O Verification and Validation
O Code Generation

¥

Output2

5.Model Configuration Options

5.1.1. jc_0011:
ID:Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

5.1.2. jc_0021:

ID:Title
Priority
Scope

MATLAB
Version

Prerequisites

Optimization parameters for Boolean data types

jc_0011: Optimization parameters for Boolean data types
strongly recommended
MAAB

All

na_0002: Appropriate implementation of fundamental logical and numerical
operations
The optimization option for Boolean data types must be enabled (on).

Path Parameter Image

Configuration BooleanDataType
Parameters >
Optimization >
Simulation and
code generation
> Implement logic

Optimization
Simulation and code generation

| Block reduction

SignalS as | /| Implement logic signals as Boolean data (vs. double)
Boolean data (vs.
double)
O Readability O Verification and Validation
M Workflow M Code Generation
O Simulation

V2.2

Model diagnostic settings

jc_0021: Model diaghostic settings
strongly recommended
MAAB

All

The following diagnostics must be enabled. An enabled diagnostic is set to
either “warning” or “error”. Setting the diagnostic option to “none” is not
permitted. Diagnostics that are not listed can be set to any value (none,
warning or error).

e Solver Diagnostics
e Algebraic loop
¢ Minimize algebraic loop
e Sample Time Diagnostics
e Multitask rate transition
Description e Data Validity Diagnostics
¢ Infor NaN block output
e Duplicate data store names
e Connectivity
Unconnected block input ports
Unconnected block output ports
Unconnected line
Unspecified bus object at root Outport block
Mux blocks used to create bus signals
Invalid function-call connection
Element name mismatch

O Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

6.Simulink

6.1. Diagram Appearance

6.1.1. na_0004: Simulink model appearance

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

na_0004 Simulink model appearance

Recommended
MAAB

All

The model appearance settings should conform to the following guidelines when
the model is released. The user is free to change the settings during the

development process.
View Options
Model Browser
Screen color
Status Bar
Toolbar
Zoom factor
Block Display Options
Background Color
Foreground Color

Execution Context Indicator

Library Link Display

Linearization Indicators

Model/Block I/O Mismatch

Model Block Version

Sample Time Colors

Sorted Order

Signal Display Options

Port Data Types

Signal Dimensions

Storage Class

Test point Indicators

Viewer Indicators

Wide Non-scalar Lines
M Readability

M Workflow
O Simulation

V2.0

Setting
unchecked
white
checked
checked
Normal (100%)
Setting
white
black
unchecked
none
checked
unchecked
unchecked
unchecked
unchecked
Setting
unchecked
unchecked
unchecked
checked
checked
checked

O Verification and Validation
O Code Generation

6.1.2. db_0043: Simulink font and font size

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

db_0043: Simulink font and font size
strongly recommended
MAAB

All

All text elements (block names, block annotations and signal labels) except free
text annotations within a model must have the same font style and font size.
Fonts and font size should be selected for legibility.

Note: The selected font should be directly portable (e.g. Simulink/Stateflow
default font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

M Readability O Verification and Validation
M Workflow O Code Generation
O Simulation

V2.0

6.1.3. db_0042: Port block in Simulink models
ID: Title db_0042: Port block in Simulink models

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

In a Simulink model, the ports comply with the following rules:

e Inports should be placed on the left side of the diagram, but they can be
moved in to prevent signal crossings.

e Outports should be placed on the right side, but they can be moved in to
prevent signal crossings.

e Duplicate Inports can be used at the subsystem level if required but should
be avoided if possible.

o Duplicate Inports cannot be used at the root level.

Correct
——— - 1
O o > T e
TC_Reas S
<Throt_Reg=
VOZCal »
= » =Sliphlods
TransTgln
.. SlipCalc
Description
Incorrect
O romm > oR.Ce
<T2_Regs =IZE
<Throt_Reg>
VO2Cal -
@ T'a's(\‘ > lttozs
K-—/’ SlipCalc
Notes on the incorrect model
e Inport 2 should be moved in so it does not cross the feed back loop lines.
e OQutport 1 should be moved to the right hand side of the diagram.
M Readability O Verification and Validation
Rationale O Workflow O Code Generation

O Simulation
Last Change V2.0

6.1.4. na_0005: Port block nhame visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

For some items while it is not possible to define a single approach that is applicable
to all organizations’ internal processes, it is important that at least within a given

organization a single consistent approach is followed. An organization applying the
guidelines must select one of these alternatives to enforce.
Organizationally-Scoped Alternatives (follow one practice):

1. The name of an Inport or Outport is not hidden. ("Format / Hide Name" is

not allowed.)

1
EngRFM_LF
LF

EngRPM_

(2) EngRFM_UnFilt

EngRPM_UnFilt

| EngRFI_LF

EngRFM_Fit ————— {1)
T R i

P EngRFM_UnFilt EngRPM_Filt

EngineRPM_Filter

2. The name of an Inport or Outport must be hidden. ("Format / Hide Name" is

Exception: inside library subsystem blocks, the names may not be hidden.

EngineRPM_Filter

LabelFromSub

<EngRFN_Filt>

<LabelFromSub>

Description
used.)
3 EngRPFM_LP >
=0 EngRFM_UnFilt -
Correct: Use of signal label
(1 ————m{<SigLabel>
SigLabel g
In1
M Readability
Rationale O Workflow

O Simulation
Last Change V2.0

O Verification and Validation
O Code Generation

6.1.5. jc_0081: Icon display for Port block
ID: Title jc_0081: Icon display for Port block

Priority recommended
Scope MAAB

Ot

MATLAB

h R14 and later
Version

Prerequisites
The ‘Icon display’ setting should be set to ‘Port number’ for Inport and Outport

blocks.
Correct
(1 {1)

Description |Incorrect

3.RPM = 3.RPM

PreScal PostScal
PreScale w PostScale

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change |V2.2

6.1.6. jm_0002: Block resizing
ID: Title jm_0002: Block resizing

Priority mandatory
Scope MAAB
MAT.LAB All

Version

Prerequisites

All blocks in a model must be sized such that their icon is completely visible and
recognizable. In particular, any text displayed (e.g. tunable parameters, filenames,
equations) in the icon must be readable.

This guideline requires resizing of blocks with variable icons or blocks with a
variable number of inputs and outputs. In some cases it may not be practical or
desirable to resize the block icon of a subsystem block so that all of the input and
output names within it are readable. In such cases, the user may hide the names in
the icon by using a mask or by hiding the names in the subsystem associated with
the icon. In this approach, the signal lines coming into and out of the subsystem
block should be clearly labeled in close proximity to the block.

Description

Correct

|tunab|e_parameter_value }: - 1 input_sigriall
Constant + z+0.5 ingaLt_signal2
+ i Trg)rii?é?tscn input_signal3 output_signal
>W> [signal] . ,)
; From tdouble) !npﬁ—S!gna::
| SIgnal
Gain sum Data Type P
Conversion subsystem
Incorrect
|
Constant _E+D'5
_ Discrete
@} :> 5+ Transfer Fcn
urm -DLIbl
Gai Fram
aln Data Type subsystem
Canwersion
M Readability O Verification and Validation
Rationale O Workflow O Code Generation

O Simulation
Last Change V2.0

6.1.7. db_0142: Position of block names
ID: Title db_0142: Position of block names

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

If shown the name of each block should be placed below the block.

Correct

0.08=
': 1 } EngRFMRaw L EngRPMFilt .'{I}

z-0.95 g

EngSignal_LowPass

Description

Incorrect

TransSignal_LowPass

0.05z
@ Trans RPMRaw ™ TransRPMFilt

z-0.85

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

6.1.8. jc_0061: Display of block names

ID: Title jc_0061: Display of block names
Priority recommended

Scope MAAB

MATLAB All

Version

Prerequisites
e The block name should be displayed when it provides descriptive information.

Int cutl | 0.0%=z

E

z-0.95

FuelRateMonitor EngineSpesdFilter

ThrottleAsbitration

e The block name should not be displayed if the block function is known from its

appearance.
n kE ! = t P =
o tmin - =qr b L
Description z =
_|
% b AND | b pe o
—

(8] e [4] [<Enter hodel Mame>]

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

6.1.9. db_0146: Triggered, enabled, conditional Subsystems
ID: Title db_0146: Triggered, Enabled, Conditional Subsystems

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

The blocks that define subsystems as either conditional or iterative should be
located at a consistent location at the top of the subsystem diagram. These blocks

Enable
e For Iterator
e Action Port

Description

e Switch Case Action
e Trigger
e While Iterator

Note: The Action port is associated with the If and Case blocks. The Trigger port
is also the function-call block.

Correct
TatslTg ! [:j
:E <TransTg> o
Incorrect
TotalTg ! C:
:i <TransTg> i
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.2

6.1.10. db_0140: Display of basic block parameters
ID: Title db_0140: Display of basic block parameters

Priority Recommended
Scope MAAB
MATLAB All

Version

Prerequisites

Important block parameters modified from the default values should be displayed.
Note: The attribute string is one method to support the display of block parameters.
The block annotation tab allows the users to add the desired attribute information.
Description |As of R2011b, masking basic blocks is a supported method for displaying the
information. This method is allowed if the base icon is distinguishable.

Correct

1
A - p Il
— - states = rezet
inital=10
tzample=.01
3
2.0 '
3 by) Merge
+0.5
tzample=-1 inital=[10 4]

Correct: Masked block

[

ic=1
Unit Delay
M Readability M Verification and Validation
Rationale O Workflow O Code Generation

O Simulation
Last Change V2.2

6.1.11. db_0032: Simulink signal appearance
ID: Title db_0032: Simulink signal appearance

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

Signal lines

Should not cross each other, if possible.
Are drawn with right angles.

Are not drawn one upon the other.

Do not cross any blocks.

Correct Incorrect
Description

Constant Terminatar

Should not split into more than two sub lines at a single branching point.

Terminatar

el—]

4>. 1

Terminator! Constant

Terminator2

Rationale M Readability O Verification and Validation

™

Terminatord

Terminatorz

M Workflow O Code Generation
O Simulation

Last Change V2.0

6.1.12. db_0141: Signal flow in Simulink models
ID: Title db_0141: Signal flow in Simulink models

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

e The signal flow in a model is from left to right.
e Exception: Feedback loops

e Sequential blocks or subsystems are arranged from left to right.
e Exception: Feedback loops

e Parallel blocks or subsystems are arranged from top to bottom.

T e
Inpu“_,—b'rmpmm| Tmplut 81 = Tmput 81
Dututh
i TRELAT g it Tt a2 Tmetue [—— Wl Tmeout 1 Cuteut
T » o2 [T | oirE Framd B
InnitB e e [GOL_O:] ! ot D OutputB
.) - P Tmplut AT P Tmplut AT Fromg — e) »
Description ITputG il | Oitouts
——] TmpCut 1
(s +wme | Signal flow should be drawn from left to right o
InpuE outpie[—W{ 5}
et ——— ' NP Qutpute
InputF TmpDut A2 DutputF —P@
hm o TmpDutAS From e —_— OutputF
I S L
InputH Cdin TRt AT
Traplut 0
[TmpDut_AS Goto
[TroCut A3
(10 ¥ P {nput)
Input. D
M Readability M Verification and Validation
Rationale M Workflow [0 Code Generation

O Simulation
Last Change V2.0

6.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

e Visual depiction of signal flow must be maintained between subsystems.
Use of Goto and From blocks is allowed provided that
¢ At least one signal line is used between connected subsystems.
¢ |f the subsystems are connected both in a feed forward and feedback

Description

loop then at least one signal line for each direction must be connected.
e Use of Goto and From blocks to create buses or connect inputs to merge
blocks are exceptions to this rule.

Correct

T T PR
[FusiPWES] [FuslPWEst)
E
[FuelMode]
s »()

Cor, EngRPMCor]

Incorrect
=, PP pipa
(1 | FuslPWlRaw [TFusiPw o FusPV

[ETesr>— i plemmricer Fura | e P]
[TotsiToral == otz e
FuelFilts
[FusiFaull == {FusFault Totsorg— = [TotalToral |
- »En =
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.0

6.1.14. jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models
Priority strongly recommended

Scope MAAB

MATLAB All

Version

db 0042: Ports in Simulink models
na 0005: Port block name visibility in Simulink models

For some items while it is not possible to define a single approach that is applicable
to all organizations’ internal processes, it is important that at least within a given

Description |organization a single consistent approach is followed. An organization applying
the guidelines must select one of these alternatives to enforce.

Prerequisites

1. The names of Inport blocks and Outport blocks must match the
corresponding signal or bus names.
Exceptions:

o When any combination of an Inport block, an Outport block, and
any other block have the same block name, a suffix or prefix
should be used on the Inport and Outport blocks.

o One common suffix / prefix is “_in” for Inports and “_out” for
Outports.

o Any suffix or prefix can be used on the ports, however the selected
prefix should be consistent.

o Library blocks and reusable subsystems that encapsulate generic
functionality.

2. When the names of Inport and Outport blocks are hidden, the user should
apply a consistent naming practice for these blocks. Suggested practices
include leaving the names as their default names (e.g., Outl), giving them
the same name as the associated signal or giving them a shortened or
mangled version of the name of the associated signal.

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
M Simulation

Last Change V2.0

6.1.15. jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block
Priority strongly recommended

Scope J-MAAB

MATLAB All

Version

Prerequisites

For Trigger port blocks and Enable port blocks

e The block name should match the name of the signal triggering the
subsystem.

0= He& | & i

Description
Taskstl
TaskZms
4
\‘\ I[100% | v

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

6.2. Signals

Signal labels are used to make model functionality more understandable from the Simulink
diagram. They can also be used to control the variable names used in simulation and code
generation. Signal labels should be entered only once (at the point of signal origination). Often it
is desirable to also display the signal name elsewhere in the model. In these cases, the signal
name should be inherited until the signal is functionally transformed. (Passing a signal through an
integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem
is not.) Once a named signal is functionally transformed, a new name should be associated with
it.

Signals may be scalars, vectors, or busses. They may carry data or control flows. Unless
explicitly stated otherwise, the following naming rules apply to all types of signals.

6.2.1. na_0008: Display of labels on signals
ID: Title na_0008: Display of labels on signals

Priority recommended
Scope MAAB
MATLAB All

Version

Prerequisites
A label must be displayed on any signal originating from the following blocks:

Inport block

From block (block icon exception applies — see Note below)

Subsystem block or Stateflow chart block (block icon exception applies)
Bus Selector block (the tool forces this to happen)

Demux block

Selector block

® o o o o o

Data Store Read block (block icon exception applies)
Constant block (block icon exception applies)

o o

A label must be displayed on any signal connected to the following destination
Description blocks (directly or via a basic block that performs a non transformative operation):
Outport block

Goto block

Data Store Write block
Bus Creator block
Mux block

Subsystem block
Chart block

Note: Block icon exception (applicable only where called out above): If the signal
label is visible in the originating block icon display, the connected signal does not
need not to have the label displayed, unless the signal label is needed elsewhere
due to a destination-based rule.

Correct

InPark IAND

VailidStart
Crank
Incorrect
AND
M Readability M Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

6.2.2. na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels
Priority strongly recommended

Scope MAAB

MAT_LAB All

Version

Prerequisites |na_0008: Display of labels on signals

If a label is present on a signal, the following rules define whether that label shall be
created there (entered directly on the signal) or propagated from its true source
(inherited from elsewhere in the model by using the ‘<’ character).
1. Any displayed signal label must be entered for signals that:
a. Originate from an Inport at the Root (top) Level of a model
b. Originate from a basic block that performs a transformative
operation
(For the purpose of interpreting this rule only, the Bus Creator block,
Mux block and Selector block shall be considered to be included
among the blocks that perform transformative operations.)
Description 2. Any displayed signal label must be propagated for signals that:
a. Originate from an Inport block in a nested subsystem
Exception: If the nested subsystem is a library subsystem, a label
may be entered on the signal coming from the Inport to
accommodate reuse of the library block.
b. Originate from a basic block that performs a non-transformative
operation
c. Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the signal
to accommodate reuse of the library block.

EngTg
| —
“ <TotalTg>

StarterTq

¥

@ StarterTg

Mested Subsystem

Ready [100% v |ode4s

/

C: <EngTg> -+

EngTqg

.—}" +
<StarterTgs

StarterTg

TotalTg

TotalTg

Add

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

6.2.3. db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

The labels must be visually associated with the corresponding signal and not
overlap other labels, signals or blocks.

Description
Labels should be located consistently below horizontal lines and close to the
corresponding source or destination block.
M Readability O Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.0

6.2.4. db_0081: Unconnected signals, block inputs and block outputs

ID: Title db_0081: Unconnected signals and block inputs / outputs
Priority Mandatory

Scope MAAB

MATLAB All

Version

Prerequisites

A system must not have any:

Description e Unconnected subsystem or basic block inputs.

e Unconnected subsystem or basic block outputs
e Unconnected signal lines
e An otherwise unconnected input should be connected to a ground block
e An otherwise unconnected output should be connected to a terminator
block
Correct

RPM_Z2_RadPerSec

Terminator

RPM_2_RadPerSec

M Readability M Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

6.3. Block Usage

6.3.1. na_0003: Simple logical expressions in If Condition block

ID: Title na_0003: Simple logical expressions in If Condition block
Priority mandatory

Scope MAAB

MATLAB All

Version

Prerequisites

A logical expression may be implemented within an If Condition block instead of
building it up with logical operation blocks if the expression contains two or fewer
primary expressions. A primary expression is defined here to be one of the
following:

e Aninput

e A constant

e A constant parameter

e A parenthesized expression containing no operators except zero or one

Description instances of the following operators: <, <=, >, >=, ~=, ==, ~, (See for
the following examples.)

Exception:

A logical expression may contain more than two primary expressions if both of the
following are true:

e The primary expressions are all inputs

e Only one type of logical operator is present

Examples of Acceptable Exceptions:

e ulju2|ju3|jud]lu5
e Uul&&u2&&u3&& u4

Examples of Primary Expressions:

ul
5
K
(ul1>0)
(ul<=G)
(ul>U2)
(~ul)
(EngineState.ENGINE_RUNNING)

Examples of Acceptable Logical Expressions:

ul || u2

(ul>0) && (ul <20)

(ul >0) && (U2 <u3)

(ul >0) && (~u2)

(EngineState.ENGINE_RUNNING) & (PRNDLState.PRNDL_PARK)
Note: In this example EngineState. ENGINE_RUNNING and
PRNDLState.PRNDL_PARK are enumeration literals

1

Examples of unacceptable logical expressions include:

e ul&&u2|u3 (too many primary expressions)

o ul&&(u2|ul) (unacceptable operator within primary
expression)

e (ul>0)&& (Ul <20)&& (U2>5) (too many primary expressions that
are not inputs)

e (ul>0)&&((2*u2) > 6) (unacceptable operator within primary
expression)

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change (V2.2

6.3.2. na_0002: Appropriate implementation of fundamental logical and
numerical operations

na_0002: Appropriate implementation of fundamental logical and numerical

ID: Title -
operations

Priority mandatory

Scope MAAB

MAT]_AB All

Version

Prerequisites

e Blocks that are intended to perform numerical operations must not be
used to perform logical operations.
Incorrect

LD

i Onst

e Alogical output should never be directly connected to the input of blocks
that operate on numerical inputs.
e The result of a logical expression fragment should never be operated on
by a numerical operator.
Incorrect

Description >

| MDD

—

e Blocks that are intended to perform logical operations must not be used to
perform numerical operations.

e A numerical output should never be connected to the input of blocks that
operate on logical inputs.

Incorrect

[AMD [2Er=2

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change (V2.0

6.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers
Priority mandatory
Scope MAAB

MATLAB

Version Al

Prerequisites

e Control algorithm models must be designed from discrete blocks.
e The MathWorks “Simulink Block Data Type Support” table provides a list
of blocks that support production code generation.
o Use blocks that are listed as “Code Generation Support”.
o Do not use blocks that are listed as “Not recommended for
production code” — see footnote 4 in the table.
e In addition to the blocks defined by the above rule, do not use the
following blocks

Sources are not allowed:

Sine Wave

=5

Pulse Generator

W

Random Number

Description
Uniform Random Number

o

Band-Limited White Noise

= HEE

Additional blocks that are not allowed:
The MAAB Style guide group recommends not using the following blocks. The
list can be extended by individual companies.

Slider Gain 11 p
Manual Switch Hl“ﬂ—“}
—
Complex to Magnitude-Angle >{LL:I|:_
Magnitude-Angle to Complex H! :::;
B.e(uj 3

Complex to Real-Imag Timiu)

L

E Hn.LL
Real-Imag to Complex I
; F(u)
Polynomial oF) =5
(@) Interpreted
MATLAB Fen MATLAB Fen [
Goto Tag Visibility o
=
Probe A0, T=:0 0], C:0, D:I:Ii
-
Notes (1) InR2011a, the MATLAB Fnc was renamed the Interpreted MATLAB Function
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

6.3.4. hd_0001: Prohibited Simulink sinks
ID: Title hd_0001: Prohibited Simulink sinks

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites
Control algorithm models must be designed from discrete blocks.
The following sinks blocks are not allowed:

To File

Description |\ orkspace)| untitied mat)| simout
Stop -
Simulation ToFile To Workspace Stop Simulation
Simulink Scope and Display blocks are allowed in the model diagram. Consider
Note using the Simulink Signal logging and Signal and Scope Manager for data logging
and viewing requirements.
M Readability O Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change |V2.2

6.3.5. na_0011: Scope of Goto and From blocks
ID: Title na_0011: Scope of Goto and From blocks

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

For signal flows, the following rules apply:

e From and Goto blocks must use local scope.
Note: Control flow signals may use global scope.
Control flow signals are output from:

e Function-call generators

e Ifand Case blocks

e Function call outputs from MATLAB and Stateflow blocks
Control flow signals are identified as dashed lines in the model after updating a
§imu|ink model.

E Sink Block Parameters: Goto 2
Goto

Send signals to From blocks that have the specified tag. If tag
visibility is 'scoped’, then a Goto Tag Visibility block must be used to
define the visibility of the tag. The block icon displays the selected tag
name (local tags are enclosed in brackets, [], and scoped tag names
are enclosed in braces, {1).

Description
FParameters
Goto Tag: GotoScope Tag Visibility: |local -
[t = omm l
|
¥
FromFunc()
CI}—.' na_ 0011 _inpart na_0011_output 4@
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

6.3.6. jc_0141: Use of the Switch block
ID: Title jc_0141: Use of the Switch block

Priority strongly recommended

Scope MAAB
MAT_LAB All
Version

Prerequisites

The switch condition, input 2, must be a Boolean value.
The block parameter “Criteria for passing first input” should be set to u2~=0.

Correct

dauble

= Function Block Parameters: Switch x|

—Switzh

Pazz through input 1 when input 2 zatisfies the zelected criterion; athenwize, pazs
through input 3. The inputs are numbered top to bottarm [or left to right]. The input 1
pazs-through criteria are input 2 greater than ar equal, greater than, or not equal to
the threzhold. The firzt and third input ports are data portz, and the second input port
iz the contral port,

ki ain ISignaIData Typez

Description
Criteria For pazzing first input: | u2 ~=10 j
Threshald: U2 »= Threzhold
|o
Incorrect
@ double
Inl
Switch
< Threshald=20>
b ity | Signal Data Typez I
Criteria for passingdist input: |uz »= Threshold Y
Threszhold:
|20
M Readability O Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.2

6.3.7. jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block
Priority recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Sum blocks should:
e Use the “rectangular’ shape.
e Be sized so that the input signals do not overlap.

Correct Incorrect

— s

Description |® The round shape can be used in feedback loops.
e There should be no more then 3 inputs.
e The inputs may be positioned at 90,180,270 degrees.
e The output should be positioned at O degrees.

Correct Incorrect

Ul
-
Z

it Ceelary

:—: autput
input k. autpat

Gain

-

output
Gain

-

M

Gain

Correct Incorrect

F Y

M Readability O Verification and Validation

Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

6.3.8. jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block
Priority recommended

Scope J-MAAB

MAT_LAB All

Version

Prerequisites

When the relational operator is used to compare a signal to a constant value the
constant input should be the second (lower) input.

Correct Incorrect

o
Description A « «
EE EE

_ A _
e o
M Readability O Verification and Validation
Rationale O Workflow M Code Generation

O Simulation
Last Change V2.0

6.3.9. jc_0161: Use of Data Store Read/Write/Memory blocks

ID: Title jc_0161: Use of Data Store Read / Write / Memory blocks
Priority strongly recommended

Scope J-MAAB

MATLAB All

Version

Prerequisites |Jc_0341: Data flow layer

Data Store AF Data Store A Data Store A

. Read Write Memory
Cata Stove Cata Stoee Crata Store
Description ol v

e Prohibited in a data flow layer.
¢ Allowed between subsystems running at different rates.

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

6.4. Block Parameters

6.4.1. db_0112: Indexing
ID: Title db_0112: Indexing

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

e Use a consistent vector indexing method for all blocks

o When possible, use zero-based indexing to improve code efficiency. However,
Description |since MATLAB blocks do not support zero-based indexing, one-based indexing can
be used for models containing MATLAB blocks.

e cgsl_0101: Zero-based indexing

See Also e hisl_0021: Consistent vector indexing
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

6.4.2. na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Vectors

Description The individual scalar sighals composing a vector must have common functionality,

data types, dimensions and units. The most common example of a vector signal is
sensor or actuator data that is grouped into an array indexed by location. The
output of a Mux block must always be a vector. The inputs to a Mux block must
always be scalars.

Busses

Signals that do not meet the vectorization criteria described above must only be
grouped into bus signals. Bus selector blocks may only be used with a bus signal
input; they must not be used to extract scalar signals from vector signals.

Examples
Some examples of vector signals include:
Vector type Size
Row vector [1n]
Column vector [n1]
Wheel speed vector [1 Number of wheels]
Cylinder vector [1 Number of cylinders]
Position vector based on 2-D
) [12]
coordinates
Position vector based on 3-D [13]

coordinates

Some examples of bus signals include:

Bus Type Elements
Force Vector [Fx, Fy, Fz]
Position

Sensor Bus Wheel Speed Vector [Qyf, O O}, Oyl
Acceleration
Pressure
Sensor Bus
Actuator Bu

Controller Bus

Coolant Temperature
Serial Data Bus Engine Speed,
Passenger Door Open

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

6.4.3. db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks
Priority strongly recommended

Scope MAAB

MATLAB

Version Al

Prerequisites

To insure that a parameter is tunable, it must be entered in a block dialog field
e Without any expression.
e Without a data type conversion.
e Without selection of rows or columns.

Correct
Description [tunable_parameter value | [tunable_parametervector | [tunable_parameter_amay b
Incorrect
| tunahle_parameter_value*2 F| tunahble_parameter_vectort3 |> | tunable_parameter_array*3 |>
|int16(tunable_parameter_value) F| tunable_parameter_vector(2) |> | tunahble_parameter_array(1,1) |>
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

6.5. Simulink Patterns

The following rules illustrate sample patterns used in Simulink diagrams. As such they would
normally be part of a much larger Simulink diagram.

6.5.1. na_0012: Use of Switch vs. If-Then-Else Action Subsystem
ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

The Switch block:
e Should be used for modeling simple if-then-else structures if the
associated then and else actions involve only the assignment of constant

values.
double
IF_Walue | —————
boolean double
IF _Condition .F—I
L. double
Description Elze_%alue

The if-then-else action subsystem construct:

e Should be used for modeling if-then-else structures if the associated then
and/or else actions require complicated computations. This will maximize
simulation efficiency and the efficiency of generated code (Note that even
a basic block, for example a table look-up, can require fairly complicated
computations.)

Rationale

Last Change

" if(u1)
DynamicSlipFlag else

k4

fr
“outt

TireSlipConst

h

\WheelSpeed €lse {} Merge b——
Out1 b S TireSlip

L A i

EngSpeed
CalculateTireSlip

e Must be used for modeling if-then-else structures if the purpose of the
construct is to avoid an undesirable numerical computation, such as
division by zero.

e Should be used for modeling if-then-else structures if the explicit or implied
then or the else action is just to hold the associated output value(s).

In other cases, the degree of complexity of the then and/or else action
computations and the intelligence of the Simulink simulation and code generation
engines will determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-
else structures and case structure implementations.

M Readability O Verification and Validation
M Workflow O Code Generation
O Simulation

V2.0

6.5.2. db_0114: Simulink patterns for If-then-else-if constructs

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0114: Simulink patterns for If-then-else-if constructs
strongly recommended
MAAB

All

The following patterns should be used for If-then-else-if constructs within Simulink:

Equivalent Functionality Simulink pattern

Rationale

Last Change

IF THEN ELSE IF with
blocks

if (If_Condition) {

output_signal = If Value; |icerser

}

else if (Else_If_Condition) {
output_signal =

Else_If Value;
else { Els=_I7_Congition
output_signal =
Else Value;

}

IF THEN ELSE IF
with if/then/else
subsystems:
if(Fault_1 Active &
Fault 2 Active)

boolean ; if((u1) & (u2)) o ,
Fault_1_Active u ;
= it elseif((ul) | (u2)) [=F-- —-— - — : .
ErrMsg = SaftyCrit; ‘
boolean o)
Fault_2_Active else ¥ F
! SaftyCritMsg

elseif { }

else if (Fault_1_Active | i 3
Fault 2 Active) !

Out |2 . double

ErMsg
DriverWarmn

ErrMsg = DriveWarn; NoFauls L

}

else

ErrMsg = NoFaults;

}
M Readability O Verification and Validation
M Workflow M Code Generation
O Simulation

V2.0

6.5.3. db_0115: Simulink patterns for case constructs

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0115: Simulink patterns for case constructs
strongly recommended
MAAB

All

The following patterns are used for case constructs within Simulink:
Equivalent Functionality Simulink Pattern

Case
With switch case block

switch (PRNDL_Enum)

{ Gase (11— - — - — - — - — - — - — -
case 1 B O
TgEstimate = ParkV; Y : !
break; .
case 2
TgEstimae = RewV;
break;
default
TgEstimate = NeutralV;
break;
}
M Readability O Verification and Validation
Rationale M Workflow O Code Generation

O Simulation

Last Change V2.2

Pak
)
In1 1 hA.
" e o Etimate

6.5.4. db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Use the following patterns for logical combinations within Simulink:

Equivalent Functionality Simulink pattern

input_signall

AMD

input_signalz =
input_signal3

Description

1 H 1 1 - - i
Combination of logical signals: “Tnout_signaid T

conjunctive . .
input_signals

input_signald

[

Y

AMD

oR

¥

input_signal? =

input_signald

AMD

Y

output_signal

input_signall

- OR
input_signal2

¥

input_signall

Combination of logical signals: “inpul_signaid T
disjunctive

OR el AND .
- - autput_signal
input_signala

input_signalé
OR

¥

input_signal? =

input_signala

M Readability M Verification and Validation
M Workflow [0 Code Generation

Rationale O Simulation

Last Change |V1.00

6.5.5. db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Simulink is a vectorizeable modeling language allowing for the direct processing of
vector data. The following patterns are used for vector signals within Simulink:

Equivalent Functionality Simulink Pattern

Vector loop:
for (i=0; i>input_vector_size; i++) {

OUtDUt_VeCtor(i) = inPUt_VECtor(i) * input_vector output_vector

tunable_parameter_value; Gain
}

o Vector loop:

Description for (i=0; i>input_vector_size; i++) {

output_vector(i) = input_vector(i) * TR SURU_vzetor
tunable_parameter_vector(i); Iy Gain
}
Vector loop:

output_signal = 1;
for (i=0; i>input_vector_size; i++) { — ﬂ
output_signal = output_signal * input_vectar
input_vector(i); Product

output_sianal

Vector loop:

output_signal = 1;

for (i=0; i>input_vector_size; i++) {
output_signal = output_signal /
input_vector(i);

Vector loop:

for (i=0; i>input_vector_size; i++) {
output_vector(i) = input_vector(i) +
tunable_parameter_value;

}

Vector loop:

for (i=0; i>input_vector_size; i++) {
output_vector(i) = input_vector(i) +
tunable_parameter_vector(i);

}

Vector loop:

output_signal = 0;

for (i=0; i>input_vector_size; i++) {
output_signal = output_signal +
input_vector(i);

Vector loop:

output_signal = 0;

for (i=0; i>input_vector_size; i++) {
output_signal = output_signal -
input_vector(i);

Minimum or maximum of a signal or a
vector over time:

autput_signal

input_wectar TT
Product

input_vector

output_wvector
‘ tunable_parameter_walue

Constant

)
input_swectar

.—- —Z
input_vectar

?"
input_signal min

input_vector

‘tunable_parameter_vectnr

Constant

output_signal

Sum

output_signal

Sum

1 g autput_signal_min

Iufi v

-

- 4
L2 |
Unit_Delay

input_vector max
> output_vector_max

Minfila

*

[|—~‘

Lnit_Delay

- output_signal_thange
H

Unit_Delay Relational
Operator

¥

input_signal

input_vectar

Change event of a signal or a vector: e s
z

Unit_Delay Relational
Operator

input_vectar —
output_vector_change
H

Logical
Unit_Delay ~ Relational OPerator
Operator

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

Rationale
Last Change |V2.20

6.5.6. jc_0351: Methods of initialization
ID: Title jc_0351: Methods of initialization

Priority recommended
Scope MAAB
MATLAB All

Version

Prerequisites |db_0140: Display of block parameters
Simple initialization:

¢ Blocks such as the Unit Delay, that have an initial value field can be used to set
simple initial values.

e To determine if the initial value needs to be displayed see db_0140.
Example

-, % >

1
- |—

z

Description

Initial Value =1
Initialization that requires computation:
For complex initializations the following rules hold.
e The initialization should be performed in a separate subsystem.

e The initialization subsystem should have a name that indicates that initialization
is performed by the subsystem.

Complex initializations can either be done at a local level (Example A) or at a global level
(Example B) or a combination.

Example A

S !

InitFlag

Initilize_Func A L o h_
* - lerge -
: s}
Func_A_Running
1 Ll
- il

Example B

Initialize EventB Taskdms
£y £y £y

Initialize_function TimingB_function Task4ms_function
Priority =1 Priority=2 Priority =3

Or

1) lin e Outi D
* Func_A
[=]l uncl)
=] nZ Out1
p{inz
1 '
' v
A =
’—b Func C
O Readability O Verification and Validation

M Workflow O Code Generation
O Simulation

Rationale
Last Change V2.0

6.5.7. jc_0111: Direction of Subsystem
ID: Title jc_0111: Direction of Subsystem

Priority strongly recommended

Scope J-MAAB
MAT_LAB All
Version

Prerequisites

Subsystem must not be reversed.
Correct

D e
Int Butt [{1)

W h2 Outt
Subsystemn
i Cutl
Subsystami
1
Description :
Unit Delay
Incorrect
I
I Cuti
2 Outi
Subsystem
L [l—{ ot ni
z
Linit Delay Subsystemi
M Readability O Verification and Validation
O Workflow O Code Generation

Rationale O Simulation

Last Change V2.0

7.Stateflow

7.1. Chart Appearance

7.1.1. db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

The name of a Stateflow input/output should be the same as the corresponding
Description |signal.
Exception: Reusable Stateflow blocks may have different port names.

M Readability O Verification and Validation
M Workflow [0 Code Generation

Rationale O Simulation

Last Change V2.2

7.1.2. db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Transitions in Stateflow:
e Do not cross each other, if possible.
e Are not drawn one upon the other.
Description e Do not cross any states, junctions or text fields.
o Allowed if transitioning to an internal state.
Transition labels can be visually associated to the corresponding transition.
Correct

. [condition] O

[condition2]

@ ()

YV [condition]

() = [condition]
{ { [
action?; actiont; actiont:

v } v ¥ 1

(= @

A A

Correct
Transition crosses state boundary to connect to substate

InitState/

[InitComplete |

QuterState/

Incorrect

Transition crosses each other and transition crosses through state.

M Readability O Verification and Validation
M Workflow [0 Code Generation

Rationale O Simulation

Last Change V2.2

7.1.3. db_0137: States in state machines

ID: Title db_0137: States in state machines
Priority mandatory

Scope MAAB

MATLAB All

Version

Prerequisites |[db_0149: Flowchart patterns for condition actions

In state machines for substates
e At least two exclusive states exist.
e A state cannot have only one substate.

Description L
P ¢ The initial state of every hierarchical level with exclusive states is clearly
defined by a default transition.
M Readability M Verification and Validation
. M Workflow [0 Code Generation
Rationale

OO0 Simulation
Last Change V2.2

7.1.4. db_0133: Use of patterns for Flowcharts
ID: Title db_0133: Use of patterns for Flowcharts

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

A Flowchart is built with the help of Flowchart patterns (for example, IF-THEN-
ELSE, FOR LOOP, and so on.):

Description The data flow is oriented from the top to the bottom.
e Patterns are connected with empty transitions.
M Readability M Verification and Validation
) M Workflow [0 Code Generation
Rationale

O Simulation
Last Change V2.2

7.1.5. db_0132: Transitions in Flowcharts
ID: Title db_0132: Transitions in Flowcharts

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites
Description |The following rules apply to transitions in Flowcharts:

e Conditions are drawn on the horizontal.
e Actions are drawn on the vertical.
e Loop constructs are intentional exceptions to this rule.

e Transition in a Flowchart has a condition, a condition action, or an empty
transition.

Transition with condition:

condition
[] =0

Transition with condition action:

{

action;

}

Empty transition:

O =

Transition actions are not used in Flowcharts. Transition actions are only valid
when used in transitions between states in a state machine, otherwise they are not
activated because of the inherent dependency on a valid state to state transition to
activate them.

Transition action:

faction;

@ =

At every junction, except for the last junction of a flow diagram, exactly one
unconditional transition begins. Every decision point (junction) must have a default
path.

[condition]

{

action;

}

A transition may have a comment:

T comment *f

[* comment
[condition]

I comment *f

{

action;

}

M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.0

7.1.6. jc_0501: Format of entries in a State block

ID: Title jc_0501: Format of entries in a State block
Priority recommended

Scope MAAB

MATLAB All

Version

Prerequisites

A new line should:
e Start after the entry (en) during (du), and exit (ex) statements.
e Start after the completion of an assignment statement “;”

Correct

i

rState

en:
Description e r‘ltr“y'_‘u’ﬁl ue=1;
during_value=0;
du:
entry value=0;
during value=1;
ex:

exit value=1;
N ,

Incorrect
Failed to start a new line after en, du and ex.

" ™y
State
enentry_value=1;
during_value=0;
du:entry_value=0;
during_value=1;
ex:exit_value=2;

h_

Incorrect
Failed to start a new line after the completion of an assignment
statemvent

State

en:entry value=1;during value=0:;du:entry_value=0;
during_value=1;ex exit_value=2;

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

7.1.7. jc_0511: Setting the return value from a graphical function

ID: Title jc_0511: Setting the return value from a graphical function
Priority mandatory

Scope J-MAAB

MATLAB All

Version

Prerequisites

The return value from a graphical function must be set in only one place.

Correct
Return value A is set in one place
function A=F(B,C)

é [B==0] : [C==0]
2 2

- { { {
Description][,:1; Eg;]D=3;

{
A=D:
1

Incorrect
Return value A is set in multinle places.

function A=F(B,C)

O Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

7.1.8. jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition
Priority recommended

Scope J-MAAB

MATLAB All

Version

Prerequisites

e Default transition is connected at the top of the state.
e The destination state of the default transition is put above the other states
in the same hierarchy.

Correct e The default transition is
connected at the top of
é the state.
e The destination state of
the default transition is
SubSt_off put above the other
G states in the same
hierarchy.

State1

Description [timer>off time]

Incorrect e Default transition is
connected at the side of
the state (State 1).

e The destination state of
the default transition is
lower than the other
states in the same
hierarchy (SuhSt off).

State

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

7.1.9. jc_0521: Use of the return value from graphical functions

ID: Title jc_0521: Use of the return value from graphical functions
Priority recommended

Scope J-MAAB

MAT]_AB All

Version

Prerequisites
The return value from a graphical function should not be used directly in a comparison
operation.

Correct
An intermediate variable is used in the conditional expression after the assignment
of the return value from the function "temp_test" to the intermediate variable "a".

[2= temgn testd) } The data type of the variable in the
comparison operation is clear

ICLR
J'rE'n[mt;:l_ = temp testl)

Description

Incorrect
Return value of the function “temp_test” is used in the conditional expression.

[temp test) ==1]

2@

are Eﬁ(n: termp testl)

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

7.2. Stateflow data and operations

7.2.1. na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators
Priority strongly recommended
Scope MAAB

Prerequisites

The bitwise Stateflow operators (&, |, and *) should not be used in Stateflow
charts unless you want bitwise operations.

To enable bitwise operations,select “Enable C-bit Operations”.

Chart: C_Bit_Operations

Marme: C Bit Operations
Machine: (machine) na 0001

State Machine Type: [Classic -

Ipdate method: |Inherited « | Sample Time:

Enable C-hit operations

User specified stateftransition execution order

[] Export Chart Level Graphical Functions (Make Global)
Description IUse Strong Data Typing with Simulink IO

[] Execute (enter) Chart At Initialization

[tnitialize Outputs Every Time Chart Wakes Up

[] Enable Super Step Semantics

Support variable-size arrays

Debugger breakpoint: [On chart entry [7] Lock Editar

Description:

Correct
Use “&&” and “II” for Boolean operation.

| Mame | Data Twpe

[4] & boalean
[4] b boaolean
}_ fi [(a”b)&&c] D{ [4] e boalean

Use “&” and “I” for bit operation.

I Mame I Data Type

1] d uints

d &F [i:] e Lints

}_; [(|E)] D=< [14] f uintd
Incorrect

Use “&” and “I” for Boolean operation.

I Mame I Data Twpe

BE! baclean
[(alb)&c] 4] b boolean
}_ i {>< [HE] C boolean
[0 Readability O Verification and Validation
Rational O Workflow M Code Generation

M Simulation
Last Change |V 2.2

7.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow
Priority recommended

Scope MAAB

MATLAB All

Version

Prerequisites
Do not perform unary minus on unsigned integers.

Correct
t . . I Mame I Data Tvpe I
- sil6_var1=—si16_var2; [rjsvaz nre
Description 1 T
Incorrect
k . . I MHame I Data Tvpe I
ui16_var1=-uil6_var2; [juzaz unne
|
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.0

7.2.3. na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow
Priority recommended
Scope MAAB

MATLAB

Version Al
Prerequisites

¢ Comparisons should be made only between variables of the same data type.
e |If comparisons are made between variables of different data types then the
variables need to be explicitly type cast to matching data types.

Correct Incorrect
Same data type in " w

i” and “n Different data type in “" and “d”
. Li<n] f . [i<d]

I MHame I Data Type I I Mame I Data Tvpe I
1] uintd 4] i uintd
1] m uintd [1+] d int16
Correct
[Int16(i)=d]

Description = =)

| MHame | Data Tvpe |
i uintd
] d int16

Cry

1
&
i
1
3
i

s

e

¢ Do not make comparisons between unsigned integers and negative numbers.
Incorrect

i<~
[i<-1] v

I MHame I Data Tvpe I

L

[4] 0 uintd
[0 Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.1

7.2.4. db_0122: Stateflow and Simulink interface signals and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

A Chart uses strong data typing with Simulink (The option "Use Strong Data Typing

Description with Simulink I/0" must be selected).

Chart: Strong_Data_Type

Mame: Strong Data Type
Machine: {machine)db 0122

State Machine Type: |Classir_ -

Update method: |Inherited = | Sample Time:

| Enable C-bit operations

| User spedified stateftransition execution arder

[] Export Chart Level Graphical Functions {Make Global)

IUse Strong Data Typing with Simulink 10

Execute (enter) Chart At Initialization
[Initialize Outputs Every Time Chart Wakes Up
Enable Super Step Semantics

| Support variable-size arrays

Debugger breakpoint: On chart entry Lock Editor
Description:

M Readability M Verification and Validation

M Workflow O Code Generation

Rationale O Simulation

Last Change V2.0

7.2.5. db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Internal signals and local auxiliary variables are "Local data" in Stateflow:
e Alllocal data of a Stateflow block must be defined on the chart level or
below the Object Hierarchy.
Description e There must be no local variables on the machine level (i.e. there is no
interaction between local data in different charts).
e Parameters and constants are allowed at the machine level.
Correct

4 |Exploring... model/chart state _ (O] x|
File Edt Tools Add Help

\Object Hierarchy |Contents of. (state) modelichart.state

L] model Name Scope Trigger Type Size Min Max Initval FWS Tows Watch
[i] data Local double 0

\ levents(0) data(1) targets(m 1 [[1:1]

Incorrect
Exploring... model !EIE
File Edt Tools Add Help
Object Hierarchy Contents of. (maching) madel
o Name Scope Trigger Type Size Min Max Inifval FWS ToWS Watch
- @ chat [] data Local double]
] state & <fun
K 1+
\ events(0) data(!) targets(1) 2 [1:2)
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.0

7.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow

ID: Title jc_0481: Use of hard equality comparisons for floating point numbers in
' Stateflow

Priority recommended

Scope MAAB

MATLAB All

Version

Prerequisites

e Do not use hard equality comparisons (Varl == Var2) with two floating point
numbers.

e If a hard comparison is required a margin of error should be defined and used
in the comparison (LIMIT in the example).

e Hard equality comparisons can be done between two integer data types.
Correct
I Mame I Data Type I
[+] 41 double
[ig?] dz double

Description

{diff=(dt - d2)]

[C-LIMIT <= diff) && (diff (= LIMIT)]

Incorrect

[0 Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

7.2.7. jc_0491: Reuse of variables within a single Stateflow scope

|ID: Title |jc_0491: Reuse of variables within a single Stateflow scope
Priority recommended

\Scope |MAAB

MATLAB Al

Version

Prerequisites |

The same variable should not have multiple meanings (usages) within a single
Stateflow state.

Correct Incorrect
Variable of loop counter must not be The meaning of the variable “”
used other than loop counter. changes from the index of the loop
counter to the sum of a+b
?

H

Description

Correct

tempVar is defined as local scope in
both SubState_A and SubState B

/i: opState/ _\\
SubState A/

en:
tempWar = engSpd;
engSpd = FiltFunc{tempWar);

TRANS _CALC ENG_CALC

SubState B/

en:

tempVar = tranSpd;

tranSpd = FiltFunc(tempVar);

‘ Contentz of: jc_0431/Chartf] opState/SubState A

| I Mame I Scopel F'orll Data Type Mode I Data Ty
iéi] tempifar Local Built-in int32

Contentz of: jo_0491/ChartAT opState/SubState B

| M ame | Scope | F'oltl Diata Tope Mndel Datal

[i%ﬂ tempt'ar Local Built-in int32
M Readability O Verification and Validation
. M Workflow M Code Generation
Rationale

O Simulation

Last Change V2.2

7.2.8. jc_0541: Use of tunable parameters in Stateflow

ID: Title jc_0541: Use of tunable parameters in Stateflow
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Create tunable parameters in Stateflow charts in one of two ways:
1.) Define the parameters in the Stateflow chart and corresponding

parameters in the base workspace
2.) Include the tunable parameters as an input into the Stateflow chart. The
parameters must be defined in the base workspace.

— -
Base a [5] simulink Root ————————
@ \muink Roo Column View: |Data Objects | ShowDetalls 2 obiect(s
Workspace h Base Workspace
. 4 B jeosn Name Value DatsType |
definitions 1 Mogel Workspace [] inputBasedparam 5 ints
& Configuration (Active) [4] chartBasedParam 12 inta
&h Code for je 0541
L. ® Aduice for jc 0541
Description ®y jeosat
4 Simulink Root e]
StateﬂOW El Column View: |Stateflow ~ | Show Detsils 2ok
ﬁ Base Workspace
Chart 4 E je 0541 Name Scope - Port Re
definitions g Eﬂo?l\wtr_ksp[a;:t_] [i41] inputBasedParam Input 1
onfiguration [Active]
9 [J,%E] chartBasedParam Parameter

&b Code forjc_0541
% Advice for jc 0541

%y jcosn
Stateflow
chart
inputBasedParam inputBssedParam %
M Readability O Verification and Validation
M Workflow M Code Generation

Rationale O Simulation

Last Change V2.2

7.2.9. db_0127: MATLAB commands in Stateflow
ID: Title db_0127: MATLAB commands in Stateflow

Priority mandatory
Scope MAAB
MAT_LAB All

Version

Prerequisites
Description |In Stateflow charts:

M Do not use the .ml syntax
Individual companies should decide on the use of MATLAB functions. If
they are permitted, then MATLAB functions should only be accessed
through the MATLAB function block.

Correct

XX Trac/
du:
[xForce yForce] = calcWheel(WhellTqTot, wheelAng);

e
[xF yF] = calcWhell(WheelTq,wheelAng)
Incorrect
XY Trac/
du:

xForce = WheelTqgTot * ml.cos(wheelAng);
yForce = WheelTqgTot * mlsin(wheelAng);

M Readability M Verification and Validation
. M Workflow M Code Generation
Rationale . .
[Simulation
Note Code generation supports a limited subset of the MATLAB functions. For a

complete list of the supported function, see the MathWorks documentation.
Last Change V2.2

7.2.10. jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Description |In a Stateflow diagram, pointers to custom code variables are not allowed.

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change |V1.00

7.3. Events

7.3.1. db_0126: Scope of events
ID: Title db_0126: Scope of events

Priority Mandatory
Scope MAAB
MATLAB I5re R2009b
Version

Prerequisites

The following rules apply to events in Stateflow:
e All events of a Chart must be defined on the chart level or lower.

Description e There is no event on the machine level (i.e. there is no interaction with
local events between different charts).
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change V2.2

7.3.2. jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts
Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites |[db_0126: Scope of events

The following rules apply to event broadcasts in Stateflow:
e Directed event broadcasts are the only type of event broadcasts allowed.
e The send syntax or qualified event names are used to direct the event to a
Description particular state.
e Multiple send statements should be used to direct an event to more than
one state.
Correct: Example using the send syntax:

L [PLA 1 [Input = 10]/ P_A_2/
¢ Parallel_2/ %
. (PB_1 | P_B_2 i

Rationale

M Readability
M Workflow

O Simulation

Last Change [V2.20

7.4. Statechart Patterns

7.4.1. db_0150: State machine patterns for conditions

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

M Verification and Validation
M Code Generation

db_0150: State machine patterns for conditions

strongly recommended
MAAB

All

The following patterns are used for conditions within Stateflow state machines:

Equivalent Functionality

ONE CONDITION:
(condition)

UP TO THREE CONDITIONS,
SHORT FORM:

(The use of different logical
operators in this form is not
allowed, use sub conditions
instead)

(condition1 && condition2)
(condition1 || condition2)

TWO OR MORE
CONDITIONS, MULTILINE
FORM:

A sub condition is a set of
logical operations, all of the
same type, enclosed in
parentheses.

(The use of different operators
in this form is not allowed, use
sub conditions instead)

(conditionl ...
&& condition2 ...
&& condition3)

(conditionl ...
Il condition? ...

L]

L]

[
[

State Machine Pattern

[condition]

[condition && condition2]

[condition1 || condition?]

[condition ..
&& condition? ...
&& condition3]

[condition? ..
| condition2 ..
| condition3)

Rationale

|| condition3)

M Readability

O Workflow
O Simulation

Last Change (V2.0

O Verification and Validation
[0 Code Generation

7.4.2. db_0151: State machine patterns for transition actions

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0151: State machine patterns for transition actions

strongly recommended

MAAB

All

The following patterns are used for transition actions within Stateflow state

machines:

Equivalent
Functionality

ONE TRANSITION
ACTION:

action;

TWO OR MORE
TRANSITION
ACTIONS,

MULTILINE FORM:

(Two or more
transition actions in
one line are not
allowed)

actionl;
action2;
action3;

State Machine Pattern

A, jaction:

faction?:
action?;

,q I action3;

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change |V1.00

7.5. Flowchart Patterns

The following rules illustrate sample patterns used in flow charts. As such they would normally be
part of a much larger Stateflow diagram.

7.5.1. db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites
The following patterns are used for conditions within Stateflow Flowcharts:

Equivalent

Functionality Flowchart Pattern

[condition]

ONE CONDITION:

™ comment *f

[condition] [condition]

UP TO THREE
Description | CONDITIONS,
SHORT FORM:

I(Th,e e of dtifferent [condition1 && condition? && condition3]
ogical operators in

this form is not Q ::Q
allowed. Use sub

conditions instead.)

[condition1 && [condition1 || condition2 || condition3]
condition2 &&

condition3] O DQ
[conditionl ||

condition2 ||

condition3]

TWO OR MORE

CONDITIONS,

MULTILINE FORM: .

(The use of different [conditionT ...
logical operators in &8 condition2 ..
this form is not && condition3]

allowed. Use sub
conditions instead.)

- [condit_iu:_jn’l
[conditionl ... ” condition?

&& condition2 ... i
> condition3
&& condition3] I]

[conditionl ...
|| condition? ...
|| condition3]

CONDITIONS WITH

SUBCONDITIONS:

(The use of different

logical operators to

connect sub

conditions is not [(conditionta || condition1b) ...
allowed. The use of && (condition2a || condition2b) ...
brackets is && condition3]

mandatory.) O [}O

dition1
e itionby ! [(condition1a && conditionb) .

&& (condition2a || || {conditionZa && condition2b) ..

condition2b) ... || condition3]

&& (condition3)] . =i
[(conditionla &&

condition1b) ...
[| (condition2a &&
condition2b) ...
|| (condition3)]

[condition [condition2]

combined with the
preceding patterns.)

] DE
[conditionT]

[conditionZ] E

M Readability M Verification and Validation
Rationale M Waorkflow O Code Generation
O Simulation

Last Change V2.2

[conditionl &&
condition2]
[conditionl ||
condition2]

CONDITIONS THAT
ARE VISUALLY
SEPARATED:

(This form can be

7.5.2. db_0149: Flowchart patterns for condition actions

ID: Title db_0149: Flowchart patterns for condition actions
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites
The following patterns are used for condition actions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern
[* comment *f
ONE CONDITION ACTION: action, ;cti@n'
action; ' '
}
TWO OR MORE CONDITION _[
ACTIONS, MULTILINE FORM: ion -
(Two or more condition actions in a‘:t!':'n :
one line are not allowed.) EC’[!OHZ,
actionl; ... action3;
action?; ... }

Description | [action3; ...

O
L
actionia;
action1b;
CONDITION ACTIONS, WHICH h
ARE VISUALLY SEPARATED: C%
(This form can be combined with {
the preceding patterns.) action?
actionla; 1 '
actionlb;
action2; %
action3; i
action3,
% h
M Readability M Verification and Validation

Rationale M Workflow O Code Generation

O Simulation
Last Change |V2.20

7.5.3. db_0134: Flowchart patterns for If constructs

ID: Title db_0134: Flowchart patterns for If constructs
Priority strongly recommended

Scope MAAB

MATLAB All

Version

db 0148: Flowchart patterns for conditions
db 0149: Flowchart patterns for condition actions

Prerequisites

The following patterns are used for If constructs within Stateflow Flowcharts:

Equivalent

. . Flowchart Pattern
Functionality

[condition]

IF THEN i

if (condition){ action;
action; }

}

Description

IF THEN ELSE [condition]

if (condition) {
actionl; - _ 1

} action2, action?;

else { } }
action2;

}

IF THEN ELSE IF
if (condition1) {
actionl;

else if (condition2) {
action2;

else if (condition3) {
action3;

}

else {
action4;

}

Cascade of IF THEN
if (condition1) {
actioni;
if (condition2) {
action2;
if (condition3) {
action3;
}
}
}

M Readability
M Workflow
O Simulation

Last Change |V1.00

Rationale

[condition 1]

[condition]
- e {
[condition3] icti-:lni: actioni;
{ { 1
actiond; action3;
h I g)
[condition]
actionl;
}
[condition2]
{
action?;

o=

[condition3]

=

actiond;

}

M Verification and Validation
O Code Generation

7.5.4. db_0159: Flowchart patterns for case constructs

ID: Title

Priority strongly recommended
Scope MAAB

MAT_LAB All

Version

db 0148: Flowchart patterns for conditions

Prerequisites

db_0159: Flowchart patterns for case constructs

db 0149: Flowchart patterns for condition actions

The following patterns must be used for case constructs within Stateflow

Description Flowcharts:

Equivalent Functionality

Flowchart Pattern

CASE with exclusive
selection
selection = ...;
switch (selection) {
case 1:
actionl;
break;
case 2:
action2;
break;
case 3:
action3;
break;
default:
action4;

CASE with exclusive

conditions

c1 = conditionl;

c2 = condition2;

¢3 = condition3;

if (c1 && !c2 && 'c3) {
actionl;

}
elseif (Icl && c2 && !c3) {
action2;

}
elseif (Icl && 'c2 && ¢3) {
action3;

selection = .

I
[selection == 1]

i

action”;

}

[selection == 2]

action2;

1

[selection == 3]

{

action3;

}

{

actiond;

i];
Q i
c1 = condition;
c2 = condition2;

c3 = condition3;

}
él [c1 && 102 && 1c3]

{

action,

}

[lol && c2 && Ic3]
{

action2,

}

[lol && 1c2 && c3]
{

action3,

} ; }
else { actiond,
action4; }
}
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change |V1.00

7.5.5. db_0135: Flowchart patterns for loop constructs

ID: Title db_0135: Flowchart patterns for loop constructs
Priority recommended

Scope MAAB

MATLAB All

Version

db 0148: Flowchart patterns for conditions
db 0149: Flowchart patterns for condition actions

The following patterns must be used to create Loops within Stateflow Flowcharts:
Equivalent Functionality Flowchart Pattern

Prerequisites

O [index < number_of_loops]

FOR LOOP
for
(index=0;index<number_of loops;index++)
{
action;

}

{

action,

}

{

indexc++,

&
O

Description

[condition]

WHILE LOOP
while (condition) {
action;

}

{

action;

}

DO WHILE LOOP

do { {
action; action;
}
while (condition);
[conditian]
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change |V1.00

8.Appendix A: Recommendations for Automation Tools

These recommendations are intended for any company that develops tools that automate
checking of the Style Guidelines. These guidelines were developed by the MathWorks
Automotive Advisory Board (MAAB), and it is expected that tool vendors will create tools that
check models developed by MathWorks tools against these guidelines. In order to provide the
maximum information to potential users of the tools, the MAAB strongly recommends that tool
vendors provide a compliance matrix that is easily accessible when the tool is running. This
information should be available without a need to purchase the tool first.

The compliance matrix should include the following information:
o Version of the guidelines that are checked — shall include the complete title as found on
the title page of this document.
e The MAAB Style Guidelines Title and Version document number will be included
e Table consisting of the following information for each guideline.
e Guideline ID
Guideline Title
Level of Compliance
Detalil

The Guideline ID and Title shall be exactly as included in this document. The Level of
Compliance shall be one of the following.

e Correction — The tool checks and automatically or semi-automatically corrects the non-
compliance.

e Check — The tool checks and flags non-compliances. It is the developer’s responsibility to
make the correction.

e Partial — The tool checks part of the guideline. The detail section should clearly identify
what is and what is not checked.

e None — the guideline is not checked by the tool. It is highly recommended that the vendor
provide a recommendation of how to manually check any guideline not checked by the
tool.

9.Appendix B: Guideline Writing

The most important things to address when writing a new guideline are that each guideline should
be:

e understandable and unambiguous

e easytofind

e minimal
Guidelines with these characteristics are easier to understand and use.

By "understandable and unambiguous" we mean that a guideline's description should be precise,
clearly worded, concise and should define an evaluate able property of a model (or part of a
model). Use the words "must," "shall," "should," and "may" carefully; they have distinct meanings
that are important for model developers and model checkers (human and automated). It is helpful
to the reader if the guideline author describes how the conformant state can be reached (e.g. by
selecting particular options or clicking a certain button). Examples, counterexamples, pictures,
diagrams, and screenshots are also helpful and therefore encouraged. Minimize the allowable
exceptions to a guideline; they blur the guideline and make it harder to apply. If a guideline has
many allowable exceptions, you may be trying to cover too many characteristics with one
guideline - see "minimal" below for some solutions.

By "easy to find" we mean that a guideline should have a clear, stable title and be properly
located among all the other guidelines. A guideline's title should describe the topic covered but
not the specific evaluation criteria. This makes the title less likely to change over time and
therefore easier to find. Specific evaluation criteria should be included in the guideline's
description. For example, if a guideline addresses the characters allowed in names, the
guideline's title should be something like "Allowed characters in names," and the guideline's
description should indicate specifically what characters are or are not to be used. If a guideline
has prerequisites, they should appear above or before the dependent guideline. (This may not
always be possible if the prerequisite is in a different section.)

Lastly, by "minimal" we mean that a guideline should address only one maodel characteristic at a
time. Guidelines should be atomic. So, for example, instead of writing a big guideline that
addresses error prevention and readability at the same time, make two guidelines — one that
addresses error prevention and one that addresses readability. Make one a prerequisite of the
other if appropriate. Also, big guidelines are more likely than small guidelines to require
compromises for wide acceptance. Big guidelines may therefore end up being weaker, less
specific, and less beneficial. Small, focused guidelines will be less likely to change due to
compromise and easier to adopt.

10.Appendix C: Flowchart Reference

The following patterns are used for If-then-else-if constructs within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern
IF THEN
é& [condition]
"y
i . cond|t|on
action;
} acnon
IF THEN ELSE
é& [condition]
ey
[{ cond|t|on
action?; action;
1 1 acnon’]

IF THEN ELSE IF

[eondition 1]

[eonditionz]

actiond;

h

action;

}

Cascade of IF THEN

f [condition 1]

action1;

[candition?]

actionZ;

}

[condition3]

{
[condition3] ic’tinni; action;
i { h

actiond;

[condition]

{

action”;

}

[condition2]
{

action?2;

[condition]

{

action?;

}

[conditionZ]

{

action;

i

[condition3]

{

action3;

¥

The following patterns are used for case constructs within Stateflow Flowcharts:

Straight Line Flow Chart Pattern

CASE with exclusive selection

Curved Line Flow Chart Pattern

selection= ..,

selection = ..

¥

[selection == 1]

=)
[selection == 2]
[selection == 3] [selection==4] |[selection == 2] [selection ==1]
{ { {
{ { { action?; actionZ; action;
actiond: action3, | actionZ, action; } } 1
¥ } ¥ }

&

CASE with exclusive conditions

¢l =conditiont;
£Z = condition?;
c3 = condition3;

}
o1 && 102 8& 1¢3]

20

[lcT && c2 && Ic3]

llc && 1c2 && c3]

{

actiond | action2 | actiont;

} } %

actiond:

}

1= condition?;
2 = condition?,;
c3 = condition3;

o1 && Ic2 && Ic3]

action?,

}

The following patterns are used for For Loops within Stateflow Flowcharts:

Straight Line Flow Chart Pattern
FOR LOOP

Q [indesx = number_of_loops]

{

index++;

g) }

Curved Line Flow Chart Pattern

{

index =0
1

[Index < number_of loops)
{

action:

Index++

}

WHILE LOOP

O

[condition]
[condition]
i [
action; .
I action;

}

5

DO WHILE LOOP

{

action;

}

[condition]

&

The following patterns are alternately used for If-then-else-if constructs within Stateflow
Flowcharts:

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

IF THEN ELSE IF

[condition1]

[condition2]

i
[condition] ic’tinni; action;
! { ' I

actiond;

i

action?;

i

Cascade of IF THEN

[condition1]

action?,

[condition2]

{
action?;

}

[condition3]

actiond;

[condition1] DQ

[condition2]

[condition3]

{ .
actiond; action3; | action2; actiont;
v
[condition1]
actiont;
}
[condition2]

action2;

}

[condition3]

action3;

11.0bsolete rules

11.1. Removed in version 2.2

JM_0013 : Annotations : The rule was original written due to a printing bug in R13. The bug was
fixed in R14 SP1.

12.Glossary

Actions

Actions take place as part of Stateflow diagram execution. The action can be executed as part of
a transition from one state to another, or depending on the activity status of a state. Transitions
can have condition actions and transition actions. For example,

Condition Transition
action action

Power_on switch_off [¢1] { elec_off}/ light_off;

Fower_off

States can have entry, during, exit, and, on event_name actions. For example,

Fower_onf
entryaction?g;

during: actionz2;
exitaction3;

an switch_offactiond {;

If you enter the name and backslash followed directly by an action or actions (without the entry
keyword), the action(s) are interpreted as entry action(s). This shorthand is useful if you are only
specifying entry actions.

The action language defines the categories of actions you can specify and their associated
notations. An action can be a function call, an event to be broadcast, a variable to be assigned a
value, etc.

Action Language

You sometimes want actions to take place as part of Stateflow diagram execution. The action can
be executed as part of a transition from one state to another, or it can depend on the activity
status of a state. Transitions can have condition actions and transition actions. States can have
entry, during, exit, and, on event_name actions.

An action can be a function call, an event to be broadcast, a variable to be assigned a value, etc.
The action language defines the categories of actions you can specify and their associated
notations. Violations of the action language notation are flagged as errors by the parser. This
section describes the action language notation rules.

Chart Instance

A chart instance is a link from a Stateflow model to a chart stored in a Simulink library. A chart in
a library can have many chart instances. Updating the chart in the library automatically updates
all the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occur given that the specified
expression is true. For example,

neutral

clutch_engaged

‘(Tangaged @ o

[speed = threshold] [speed>threshold]is a
@/—\q condition
M /

The action language defines the notation to define conditions associated with transitions.

Connective Junction

Connective junctions are decision points in the system. A connective junction is a graphical object
that simplifies Stateflow diagram representations and facilitates generation of efficient code.
Connective junctions provide alternative ways to represent desired system behavior.

This example shows how connective junctions (displayed as small circles) are used to represent
the flow of an if code structure.

1T 1
'g[m]{m} ' [0311{

it [e2]{
az
}else if [e3]{
a3
}
[c2]{a2} }
[c3]{a3}

Or the equivalent squared style

[c1] if [c1]{
Q at
{a1} if [c2]{
[C2] 32
}else if [c3]{
{a2} a3
}
}
[c3]
{a3}
Name Button Description
Icon
Connective i One use of a Connective junction is to handle situations where
junction I transitions out of one state into two or more states are taken based on

the same event but guarded by different conditions.

Data
Data objects store numerical values for reference in the Stateflow diagram.

Defining Data

A state machine can store and retrieve data that resides internally in its own workspace. It can
also access data that resides externally in the Simulink model or application that embeds the
state machine. When creating a Stateflow model, you must define any internal or external data
referenced by the state machine's actions

Data Dictionary

The data dictionary is a database where Stateflow diagram information is stored. When you
create Stateflow diagram objects, the information about those objects is stored in the data
dictionary once you save the Stateflow diagram.

Decomposition

A state has decomposition when it consists of one or more substates. A Stateflow diagram that
contains at least one state also has decomposition. Representing hierarchy necessitates some
rules around how states can be grouped in the hierarchy. A superstate has either parallel (AND)
or exclusive (OR) decomposition. All substates at a particular level in the hierarchy must be of the
same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state decomposition is indicated when
states have dashed borders. This representation is appropriate if all states at that same level in
the hierarchy are active at the same time. The activity within parallel states is essentially
independent.

Exclusive (OR) State Decomposition. Exclusive (OR) state decomposition is represented by
states with solid borders. Exclusive (OR) decomposition is used to describe system modes that
are mutually exclusive. Only one state, at the same level in the hierarchy, can be active at a time.

Default Transition

Default transitions are primarily used to specify which exclusive (OR) state is to be entered when
there is ambiguity among two or more neighboring exclusive (OR) states. For example, default
transitions specify which substate of a superstate with exclusive (OR) decomposition the system
enters by default in the absence of any other information. Default transitions are also used to
specify that a junction should be entered by default. A default transition is represented by
selecting the default transition object from the toolbar and then dropping it to attach to a
destination object. The default transition object is a transition with a destination but no source
object.

Name Button Description

Icon
Default '[3,__] Use a Default transition to indicate, when entering this level in the
transition hierarchy, which state becomes active by default.

Events

Events drive the Stateflow diagram execution. All events that affect the Stateflow diagram must
be defined. The occurrence of an event causes the status of the states in the Stateflow diagram
to be evaluated. The broadcast of an event can trigger a transition to occur and/or can trigger an
action to be executed. Events are broadcast in a top-down manner starting from the event's
parent in the hierarchy.

Finite State Machine

A finite state machine (FSM) is a representation of an event-driven system. FSMs are also used
to describe reactive systems. In an event-driven or reactive system, the system transitions from
one mode or state, to another prescribed mode or state, provided that the condition defining the
change is true.

Flow Graph
A flow graph is the set of Flowcharts that start from a transition segment that, in turn, starts from a
state or a default transition segment.

Flowchart (also known as Flow Path)
A Flowchart is an ordered sequence of transition segments and junctions where each succeeding
segment starts on the junction that terminated the previous segment.

Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same transition segment.

Hierarchy

Hierarchy enables you to organize complex systems by placing states within other higher-level
states. A hierarchical design usually reduces the number of transitions and produces neat, more
manageable diagrams.

History Junction

A History Junction provides the means to specify the destination substate of a transition based on
historical information. If a superstate has a History Junction, the transition to the destination
substate is defined to be the substate that was most recently visited. The History Junction applies
to the level of the hierarchy in which it appears.

Name Button Description
Icon

History Use a History Junction to indicate, when entering this level in the
Junction hierarchy, that the last state that was active becomes the next state to
@ be active.

Inner Transitions

An inner transition is a transition that does not exit the source state. Inner transitions are most
powerful when defined for superstates with XOR decomposition. Use of inner transitions can
greatly simplify a Stateflow diagram.

Library Link
A library link is a link to a chart that is stored in a library model in a Simulink block library.

Library Model

A Stateflow library model is a Stateflow model that is stored in a Simulink library. You can include
charts from a library in your model by copying them. When you copy a chart from a library into
your model, Stateflow does not physically include the chart in your model. Instead, it creates a
link to the library chart. You can create multiple links to a single chart. Each link is called a chart
instance. When you include a chart from a library in your model, you also include its state
machine. Thus, a Stateflow model that includes links to library charts has multiple state
machines. When Stateflow simulates a model that includes charts from a library model, it includes
all charts from the library model even if there are links to only some of its models. However, when
Stateflow generates a stand-alone or Real-Time Workshop® target, it includes only those charts
for which there are links. A model that includes links to a library model can be simulated only if all
charts in the library model are free of parse and compile errors.

Machine

A machine is the collection of all Stateflow blocks defined by a Simulink model exclusive of chart
instances (library links). If a model includes any library links, it also includes the state machines
defined by the models from which the links originate.

Nonvirtual Block
Blocks that perform a calculation; such as a Gain block.

Notation

A notation defines a set of objects and the rules that govern the relationships between those
objects. Stateflow notation provides a common language to communicate the design information
conveyed by a Stateflow diagram.

Stateflow notation consists of:

e A set of graphical objects

e A set of nongraphical text-based objects

e Defined relationships between those objects

Parallelism

A system with parallelism can have two or more states that can be active at the same time. The
activity of parallel states is essentially independent. Parallelism is represented with a parallel
(AND) state decomposition.

Real-Time System
A system that uses actual hardware to implement algorithms, for example, digital signal
processing or control applications.

Real-Time Workshop®

Real-Time Workshop is an automatic C language code generator for Simulink. It produces C
code directly from Simulink block diagram models and automatically builds programs that can be
run in real-time in a variety of environments.

Real-Time Workshop Target
An executable built from code generated by Real-Time Workshop

S-Function

A customized Simulink block written in C or M-Code. C-code S-Functions can be inlined in Real-
Time Workshop. When using Simulink together with Stateflow for simulation, Stateflow generates
an S-Function (MEX-file) for each Stateflow machine to support model simulation. This generated
code is a simulation target and is called the S-Fun target within Stateflow.

Signal propagation
Process used by Simulink to determine attributes of signals and blocks, such as data types,
labels, sample time, dimensionality, and so on, that are determined by connectivity

Signal source
The signal source is the block of origin for a signal. The signal source may or may not be the true
source

Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It
supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of
the two. Systems can also be multi-rate, i.e., have different parts that are sampled or updated at
different rates.

It allows you to represent systems as block diagrams that you build using your mouse to connect
blocks and your keyboard to edit block parameters. Stateflow is part of this environment. The
Stateflow block is a masked Simulink model. Stateflow builds an S-Function that corresponds to
each Stateflow machine. This S-Function is the agent Simulink interacts with for simulation and
analysis.

The control behavior that Stateflow models complements the algorithmic behavior modeled in
Simulink block diagrams. By incorporating Stateflow diagrams into Simulink models, you can add
event-driven behavior to Simulink simulations. You create models that represent both data and
control flow by combining Stateflow blocks with the standard Simulink blockset. These combined
models are simulated using Simulink.

State

A state describes a mode of a reactive system. A reactive system has many possible states.
States in a Stateflow diagram represent these modes. The activity or inactivity of the states
dynamically changes based on events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a single state, that state's parent
is the Stateflow diagram itself. A state also has history that applies to its level of hierarchy in the
Stateflow diagram. States can have actions that are executed in a sequence based upon action
type. The action types are: entry, during, exit, or on event_name actions.

Name Button Icon Description

State Use a state to depict a mode of the system.

Stateflow Block

The Stateflow block is a masked Simulink model and is equivalent to an empty, untitled Stateflow
diagram. Use the Stateflow block to include a Stateflow diagram in a Simulink model.

The control behavior that Stateflow models complements the algorithmic behavior modeled in
Simulink block diagrams. By incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create models that represent both
data and control flow by combining Stateflow blocks with the standard Simulink and toolbox block
libraries. These combined models are simulated using Simulink.

Stateflow Debugger

Use the Stateflow Debugger to debug and animate your Stateflow diagrams. Each state in the
Stateflow diagram simulation is evaluated for overall code coverage. This coverage analysis is
done automatically when the target is compiled and built with the debug options. The Debugger
can also be used to perform dynamic checking. The Debugger operates on the Stateflow
machine.

Stateflow Diagram

Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is also a graphical
representation of a finite state machine where states and transitions form the basic building
blocks of the system

Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event, and target objects.

Stateflow Finder

Use the Finder to display a list of objects based on search criteria you specify. You can directly
access the properties dialog box of any object in the search output display by clicking on that
object.

Substate
A state is a substate if it is contained by a superstate.

{Substate

Superstate

Substate

Superstate
A state is a superstate if it contains other states, called substates.

Superstate
Fubstate
Suhstate
Target

An executable program built from code generated by Stateflow or Real-Time Workshop.

Top down Processing

Top down processing refers to the way in which Stateflow processes states. In particular,
Stateflow processes superstates before states. Stateflow processes a state only if its superstate
is activated first.

Transition

A transition describes the circumstances under which the system moves from one state to
another. Either end of a transition can be attached to a source and a destination object. The
source is where the transition begins and the destination is where the transition ends. It is often
the occurrence of some event that causes a transition to take place.

Transition Path
A transition path is a Flowchart that starts and ends on a state

Transition Segment
A transition segment is a single directed edge on a Stateflow diagram. Transition segments are
sometimes loosely referred to as transitions.

Tunable parameters
A Tunable parameters is a parameter that can be adjusted both in the model and in generated
code.

True Source
The true source is the block which creates a signal. The true source is different from the signal
source since the signal source may be a simple routing block such as a demux block.

Virtual Block

When creating models, you need to be aware that Simulink blocks fall into two basic categories:
nonvirtual and virtual blocks. Nonvirtual blocks play an active role in the simulation of a system. If
you add or remove a nonvirtual block, you change the model's behavior. Virtual blocks, by
contrast, play no active role in the simulation. They simply help to organize a model graphically.
Some Simulink blocks can be virtual in some circumstances and nonvirtual in others. Such blocks
are called conditionally virtual blocks. The following table lists the virtual and conditionally virtual
blocks in Simulink.

Virtual Blocks

Block Name

Bus Selector
Demux

Enable

From

Goto

Goto Tag Visibility
Ground

Inport

Mux

Outport

Selector
Signal Specification

Subsystem

Terminator

Trigger

Virtual Scrollbar

Condition Under Which Block Will Be Virtual

Virtual if input bus is virtual

Always virtual

Virtual unless connected directly to an Outport block
Always virtual

Always virtual

Always virtual

Always virtual

Virtual when the block resides within any subsystem block
(conditional or not), and does not reside in the root (top-
level) Simulink window.

Always virtual

Virtual when the block resides within any subsystem block
(conditional or not), and does not reside in the root (top-
level)

Simulink window

Virtual except in matrix mode

Always virtual

Virtual unless the block is conditionally executed and/or
the

block's Treat as Atomic Unit option is selected

Always virtual

Virtual if the Outport port is not present

A virtual scrollbar enables you to set a value by scrolling through a list of choices. When you
move the mouse over a menu item with a virtual scrollbar, the cursor changes to a line with a
double arrowhead. Virtual scrollbars are either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either horizontally or vertically to change the

value.

	CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink®, and Stateflow®
	1. History
	2. Introduction
	2.1. Motivation
	2.2. Notes on version 2.2
	2.3. Guideline template
	2.3.1. Guideline ID:
	2.3.2. Guideline Title:
	2.3.3. Priority:
	2.3.4. Scope:
	2.3.5. MATLAB® Versions
	2.3.6. Prerequisites:
	2.3.7. Description:
	2.3.8. Rationale:
	2.3.9. Last change:

	2.4. Document Usage
	2.4.1. Guideline Interaction Semantics

	3. Naming Conventions
	3.1. General Guidelines
	3.1.1. ar_0001: Filenames
	3.1.2. ar_0002: Directory names

	3.2. Model Content Guidelines
	3.2.1. jc_0201: Usable characters for Subsystem name
	3.2.2. jc_0211: Usable characters for Inport block and Outport block
	3.2.3. jc_0221: Usable characters for signal line name
	3.2.4. jc_0231: Usable characters for block names
	3.2.5. na_0014: Use of local language in Simulink and Stateflow

	4. Model Architecture
	4.1. Simulink® and Stateflow® Partitioning
	4.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow
	4.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

	4.2. Subsystem Hierarchies
	4.2.1. db_0143: Similar block types on the model levels
	4.2.2. db_0144: Use of Subsystems
	4.2.3. db_0040: Model hierarchy

	4.3. J-MAAB Model Architecture Decomposition
	4.3.1. jc_0301: Controller model
	4.3.2. jc_0311: Top layer / root level
	4.3.3. jc_0321: Trigger layer
	4.3.4. jc_0331: Structure layer
	4.3.5. jc_0341: Data flow layer

	5. Model Configuration Options
	5.1.1. jc_0011: Optimization parameters for Boolean data types
	5.1.2. jc_0021: Model diagnostic settings

	6. Simulink
	6.1. Diagram Appearance
	6.1.1. na_0004: Simulink model appearance
	6.1.2. db_0043: Simulink font and font size
	6.1.3. db_0042: Port block in Simulink models
	6.1.4. na_0005: Port block name visibility in Simulink models
	6.1.5. jc_0081: Icon display for Port block
	6.1.6. jm_0002: Block resizing
	6.1.7. db_0142: Position of block names
	6.1.8. jc_0061: Display of block names
	6.1.9. db_0146: Triggered, enabled, conditional Subsystems
	6.1.10. db_0140: Display of basic block parameters
	6.1.11. db_0032: Simulink signal appearance
	6.1.12. db_0141: Signal flow in Simulink models
	6.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks
	6.1.14. jm_0010: Port block names in Simulink models
	6.1.15. jc_0281: Naming of Trigger Port block and Enable Port block

	6.2. Signals
	6.2.1. na_0008: Display of labels on signals
	6.2.2. na_0009: Entry versus propagation of signal labels
	6.2.3. db_0097: Position of labels for signals and busses
	6.2.4. db_0081: Unconnected signals, block inputs and block outputs

	6.3. Block Usage
	6.3.1. na_0003: Simple logical expressions in If Condition block
	6.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations
	6.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers
	6.3.4. hd_0001: Prohibited Simulink sinks
	6.3.5. na_0011: Scope of Goto and From blocks
	6.3.6. jc_0141: Use of the Switch block
	6.3.7. jc_0121: Use of the Sum block
	6.3.8. jc_0131: Use of Relational Operator block
	6.3.9. jc_0161: Use of Data Store Read/Write/Memory blocks

	6.4. Block Parameters
	6.4.1. db_0112: Indexing
	6.4.2. na_0010: Grouping data flows into signals
	6.4.3. db_0110: Tunable parameters in basic blocks

	6.5. Simulink Patterns
	6.5.1. na_0012: Use of Switch vs. If-Then-Else Action Subsystem
	6.5.2. db_0114: Simulink patterns for If-then-else-if constructs
	6.5.3. db_0115: Simulink patterns for case constructs
	6.5.4. db_0116: Simulink patterns for logical constructs with logical blocks
	6.5.5. db_0117: Simulink patterns for vector signals
	6.5.6. jc_0351: Methods of initialization
	6.5.7. jc_0111: Direction of Subsystem

	7. Stateflow
	7.1. Chart Appearance
	7.1.1. db_0123: Stateflow port names
	7.1.2. db_0129: Stateflow transition appearance
	7.1.3. db_0137: States in state machines
	7.1.4. db_0133: Use of patterns for Flowcharts
	7.1.5. db_0132: Transitions in Flowcharts
	7.1.6. jc_0501: Format of entries in a State block
	7.1.7. jc_0511: Setting the return value from a graphical function
	7.1.8. jc_0531: Placement of the default transition
	7.1.9. jc_0521: Use of the return value from graphical functions

	7.2. Stateflow data and operations
	7.2.1. na_0001: Bitwise Stateflow operators
	7.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow
	7.2.3. na_0013: Comparison operation in Stateflow
	7.2.4. db_0122: Stateflow and Simulink interface signals and parameters
	7.2.5. db_0125: Scope of internal signals and local auxiliary variables
	7.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow
	7.2.7. jc_0491: Reuse of variables within a single Stateflow scope
	7.2.8. jc_0541: Use of tunable parameters in Stateflow
	7.2.9. db_0127: MATLAB commands in Stateflow
	7.2.10. jm_0011: Pointers in Stateflow

	7.3. Events
	7.3.1. db_0126: Scope of events
	7.3.2. jm_0012: Event broadcasts

	7.4. Statechart Patterns
	7.4.1. db_0150: State machine patterns for conditions
	7.4.2. db_0151: State machine patterns for transition actions

	7.5. Flowchart Patterns
	7.5.1. db_0148: Flowchart patterns for conditions
	7.5.2. db_0149: Flowchart patterns for condition actions
	7.5.3. db_0134: Flowchart patterns for If constructs
	7.5.4. db_0159: Flowchart patterns for case constructs
	7.5.5. db_0135: Flowchart patterns for loop constructs

	8. Appendix A: Recommendations for Automation Tools
	9. Appendix B: Guideline Writing
	10. Appendix C: Flowchart Reference
	11. Obsolete rules
	11.1. Removed in version 2.2

	12. Glossary

