Physics-Informed Machine Learning
Using the laws of nature to improve generalized deep learning models
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Introduction - Fusing Data and Simulation

Climate Models

e Attention is now being drawn to using ML with scientific data for better predictive
power

* ML can be used as simulators to generate a prediction of the updated state of a
system

. Thg clan be useful in cases like climate models where simulations are expensive
and slow

* However, these ML models are trained only to minimize the error between data
and predictions, no physical information is used to inform this training

e This lack of physics-informed machine learning can limit the extrapolation efficacy

e Adding some physics into the training can aid this workflow for more robust
predictions

Climate modeling
- Huge domains
- Billions of variables

- Massive time scales
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Introduction — Fusing Data and Simulation

Typically, these models involving ...
3 .

ving complex CFD systems
with interactinF scales is
extremely costly.

1920km

A new approach:

e Deep Learning-powered
simulations

e Using data to power more
efficient solutions

* Learn on one type of weather e Rl W Mg ypo
to help predict new weather \ v /
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Introduction — Physics Informed Machine Learning

Physics-Informed Neural Networks

M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics,
Volume 378, 2019. https://doi.org/10.1016/j.jcp.2018.10.045

Learning equations

Zanna, L, Bolton, T. (2020). Data-driven equation discovery of ocean mesoscale closures. Geophysical Research
Letters, 47, e2020GL088376. https://doi.org/10.1029/2020GL088376

Synthetic data for inverse-design

Raymond, S.J., Collins, D.J., O’Rorke, R. et al. A deep learning approach for designed diffraction-based acoustic
patterning in microchannels. Sci Rep 10, 8745 (2020). https://doi.org/10.1038/s41598-020-65453-8
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How well can we trust ML-infused physics?

A system cannot be well predicted by simply learning
the data for a physical system.

This system obeys laws that simply fitting data may
not learn

When using this model to extrapolate, this can lead
to divergences “panda” “gibbon"

L57.7% contidence 00.3% confidence

This may be mediated by adding some existing
knowledge to the training process Conventional neural networks can be brittle and
vulnerable to adversarial attacks.




A simpler example — A pendulum

Complex systems like climate models can be represented by much
simpler models.

These models are typically mechanical systems where kinetic and
potential energy oscillate. Pendulums and other oscillators are
used often in physics to understand more complex processes.

Here we will focus on the prediction of the motion of a pendulum
released from different heights.

Equation of motion

6(t) + % sinf(t) =0

Energy of the system
1 .
E= Emﬁz + mg(1 — cos(8))



Results — Conventional Deep Learning

Input is angular position and velocity
Output is angular position and velocity

Network is acting like a time integrator

Dataset consists of pendulum trajectories released
from different heights.

Angular vel. and pos. of the pendulum - Phase Space Trajectories
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Network Architecture
Input layer: 2 input neurons for angle and angular velocity

Internal layers: 3 fully connected hidden layers with ReLU
activation of the form : 50,100,50

Output Layer: 2 output neurons for angle and angular
velocity

Training with an ADAM optimizer and the
commonly-used mean squared error loss
function:

Lossce = |Y —T|?



Results — Conventional Deep Learning
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Solution — Modified Loss Function

Lossce = |Y —T|?

The traditional loss function seeks to minimize the predicted Losspiy, = (1 — A)Lossyset AEy — Ex|?|
value (Y) from the target/true value (T):

Loss = f(Y —T)
However, we want to ensure that there is a notion that other

erties

factors are important, such as the conservation of energy. In a
mechanical system like the pendulum the energy (E) can be layers = ..

methods

expressed as a sum of the kinetic and potential terms: e el R

fullyConnectedLayer(50);
reluLayer;
fullyConnectedLayer(100);
reluLayer;
fullyConnectedLayer(50);

E = —mez -I— mg(l —_ COS(Q)) reluLayer; R = size(Y.3);

end

2 fuIIyConnectedLayer(Z); meanAbsoluteError = sum(abs(Y-T),3)/R;
mse_energyConsvLoss('dE’); % Take mean over mini-batch.
. N = size(Y,4);
]I MAEloss = sum(meanAbsoluteError)/N;
% % Layer forward loss functi

on goes here.
-9.81.*cos(Y(1,:)) + (1/2).*(Y(2,:).72);

The new loss, therefore, is a function of the values Y,T
and the energy, E:

e_factor = 1.0e-5;%e-8;%2*N;

ergy_loss = e_factor*(abs(true_energy - pred_energy));
oss_mag = sqrt(energy_loss”2 + MAEloss”2);
oss = L*MAEloss*MAEloss/loss_mag + (1-

LOSS p— f(Y —_ T’ E Y —_— E T) L)*energzg:joss*energy,loss/lossﬁmag;

end
end



Tools Used

FILE NAVIGATE TEXT CODE SECTION RUN
@ el C ¥ Users ¥ Sam » Dropbox ¥ MATLAB EXPO_2021 » matlab_code
Current Fol.. @ = Live Editor - C\Users\Sam\Dropbox\MATLAB_EXPO_2021\matlab_code\pgmi_physics_eng_output_newsol_test2021febmbc ® %X Workspace
Marme ~ paml_physics_eng_output_newsol_test202 1fab.mix mse_energyConsvloss.m ! Name ~
) animate_p..
) rergyCo i i il i i -
i Improving Genera!|zabll|ty of Neural Networks with Physics Step 1: Learning the trajectory of a simple pendulum
IT], ::,;UT:H Based Loss Functions Now that we have a simulator that can produce the data, we want to build a neural network that can predict the next position and velocity of the
HH pendulum.. Lessons from Feb 12: with lots of data the normal net is better for long and short extrapolations. But when the pendulum when given the current pesition and velocity of the pendulum.
- _phy.. i i
sy dataset is small the piml net s better If e take the Tirst solution that we made as our dataset, we have lwa signals, angular position and velocily, that show a pattern that emerges over
_Qj ::E:::}j:x Step 0: The trajectory of a simple pendulum 10 periods. We will cut this data in the form 70:15:15 for training:validation:testing.
] pgmil_phy.. The governning equation for a simple pendulm as shown in the figure below can be expressed as a function of if retrain regenerate
) pgmi_phy.. the angular position, (1), and the angular acceleration, (1) pos_train = [theta_sol_8(1:round(®.7*sample_size)),theta_sol_1{1:round(@.7*sample_size)),theta_sol_2(1:round(@.7*sa
. vel_train = [thetadot_sol_@(1:round(®.7*sample_size)),thetadot_sol_1(1:round(@.7*sample_size)),thetadot_sol_2(1:rou
i)+ E.ﬂlﬂlﬂlfl =0 pos_val = [theta_sol 8(round(®.7*sample_size)+1:round(@.85*sample_size)),theta_sol_1(round(@.7*sample_size)+1l:round
vel_val = [thetadot_sol_e(round(®@.7*sample_size)+1:round(@.85*sample_size)),thetadot_sol_1(round(@.7*sample_size)+1
P pos_test = [theta_sol_@(round(@.85*sample_size)+1:end),theta_sol_1(round(@.85*sample_size)+1:end),theta_sol_2(round
\ vel_test = [thetadot_sol_@(round(@.85%*sample_size)+l:end),thetadot_sol_1(round(®.85*sample_size)+l:end),thetadot_so

0 t_predict = linspace(®,t_max,PREDICTION_LENGTH); lee Scrl pts

ate Live Scripts n the

Y figure;
\ plot(pos_train, 'k');
\ hold on;
g ot " plot(pos_val,'g');
hold on;

plot(pos_test,'b’);
set(gcf, "position’,[@,8,10608,588]);

mg cast

mg

The solution to this equation can be found as the analytical harmonic equation (1) = Hyos(wi) with o being

the natural frequency of the pendulum: w = \T?’_ “m ” ] || l l ‘ ﬂ “ “ | ||
Therefore, for different values of w, the pendulum has a defined, fixed, trajectory in phase space, with the ne | ‘ ‘ ‘ ‘ | ‘ 1
natural frequency acting as the energy of the particular phase trajectory. 0 ‘ ‘ 1
1 retrain_regenerate:true; 0z \ || || ‘l H ” ” || || ” H H ” || || || ‘|
|
3 if retrain_regenerate ‘ H||H||||HH”HH”HHH |‘|IH|||\|HH|\|||| ||I‘ | U|I‘|||\|I\
4 close all; clear; clc; 0 1111 | | \|| |“||‘|‘|
5 sample_size=788; | ||HHHHHHHHH”””“ ‘HHH | |I|H | | | | | .
6 PREDICTION_LENG;’H:S‘sample_s:ize; 02 | ‘ “ l‘ (N |I| ‘l' ‘ll “ I \' ! I‘| " “ Deep Learnlng TOOIbOX
7 tneeso; | h T Ty s
8 retrain_regenerate=true; i
% Initial Conditions 04 ‘ 1
1e theta_@=pi/4; % Initial angle in radians, measured from the vertical. |
11 thetadot_0=0.8; %Initial velocity of the pendulum. 06 ‘ ‘ ‘ ‘l | ‘ ‘J ‘| “ “ U H T
% Pendulum Parameters .08 ! J ! L
s Tamnbh cmnd — 4 G 0 500 1000 1500

Deep Learning Toolbox

e deep leaming networks
Now that we have split the original dataset, we still need to split this again to differentiate between the input and the target io the neural network

For this approach we will use each timestep as the input and the next timestep as the output. To do this we just need 1o offset the input and target
arrays by one so that the two arrays are aligned and are of the same size. We will need to do this for the training, validation, and testing sets.

8 Cowrinacia troa s -




Results — PIML Deep Learning
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Results — PIML Deep Learning
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Takeaways - The Future of PIML

Physics-Informed Machine Learning is still very young but full of potential...

Traditional ML Physics-Informed ML

VS.

MATLAB-powered PIML-based design tools in biomedical
engineering

PIML-based loss functions for more robust ,
predictions in hybrid (simulation/data) systems .~

Read More

www.samraymond.com


https://www.mathworks.com/company/newsletters/articles/physics-informed-machine-learning-cloud-based-deep-learning-and-acoustic-patterning-for-organ-cell-growth-research.html?s_tid=srchtitle
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