
Physics-Informed Machine Learning
Using the laws of nature to improve generalized deep learning models

Dr. Sam Raymond | Stanford University
www.samraymond.com

Traditional ML Physics-Informed ML

vs. 𝑥𝑥

𝑥̇𝑥

𝑥𝑥

𝑥̇𝑥

Introduction - Fusing Data and Simulation
Climate Models

• Attention is now being drawn to using ML with scientific data for better predictive
power

• ML can be used as simulators to generate a prediction of the updated state of a
system

• This can be useful in cases like climate models where simulations are expensive
and slow

• However, these ML models are trained only to minimize the error between data
and predictions, no physical information is used to inform this training

• This lack of physics-informed machine learning can limit the extrapolation efficacy

• Adding some physics into the training can aid this workflow for more robust
predictions

Climate modeling

- Huge domains

- Billions of variables

- Massive time scales

Introduction – Fusing Data and Simulation

Typically, these models involving
solving complex CFD systems
with interacting scales is
extremely costly.

A new approach:
• Deep Learning-powered

simulations
• Using data to power more

efficient solutions
• Learn on one type of weather

to help predict new weather
patterns

Introduction – Physics Informed Machine Learning
Physics-Informed Neural Networks
M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics,
Volume 378, 2019. https://doi.org/10.1016/j.jcp.2018.10.045

Learning equations
Zanna, L., Bolton, T. (2020). Data‐driven equation discovery of ocean mesoscale closures. Geophysical Research
Letters, 47, e2020GL088376. https://doi.org/10.1029/2020GL088376

Synthetic data for inverse-design
Raymond, S.J., Collins, D.J., O’Rorke, R. et al. A deep learning approach for designed diffraction-based acoustic
patterning in microchannels. Sci Rep 10, 8745 (2020). https://doi.org/10.1038/s41598-020-65453-8

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1029/2020GL088376
https://doi.org/10.1038/s41598-020-65453-8

How well can we trust ML-infused physics?

• A system cannot be well predicted by simply learning
the data for a physical system.

• This system obeys laws that simply fitting data may
not learn

• When using this model to extrapolate, this can lead
to divergences

• This may be mediated by adding some existing
knowledge to the training process Conventional neural networks can be brittle and

vulnerable to adversarial attacks.

Complex systems like climate models can be represented by much
simpler models.

These models are typically mechanical systems where kinetic and
potential energy oscillate. Pendulums and other oscillators are
used often in physics to understand more complex processes.

Here we will focus on the prediction of the motion of a pendulum
released from different heights.

A simpler example – A pendulum

𝐸𝐸 =
1
2𝑚𝑚𝜃̇𝜃

2 + 𝑚𝑚𝑚𝑚(1 − cos(𝜃𝜃))

𝜃̈𝜃 𝑡𝑡 +
𝑔𝑔
𝐿𝐿 sin 𝜃𝜃(𝑡𝑡) = 0

Equation of motion

Energy of the system

Results – Conventional Deep Learning

Input is angular position and velocity
Output is angular position and velocity
Network is acting like a time integrator

Training with an ADAM optimizer and the
commonly-used mean squared error loss
function:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑌𝑌 − 𝑇𝑇 2

Dataset consists of pendulum trajectories released
from different heights.

Network Architecture
Input layer: 2 input neurons for angle and angular velocity

Internal layers: 3 fully connected hidden layers with ReLU
activation of the form : 50,100,50

Output Layer: 2 output neurons for angle and angular
velocity

Results – Conventional Deep Learning

Predicted results decay from
desired trajectory to a dominant
(minimal) energy trajectory

𝜃𝜃𝑡𝑡=0 =
𝜋𝜋
2

𝜃̇𝜃𝑡𝑡=0 = 0

𝜃𝜃𝑡𝑡=0 =
𝜋𝜋
3

𝜃̇𝜃𝑡𝑡=0 = 0

𝜃𝜃𝑡𝑡=0 =
𝜋𝜋
6

𝜃̇𝜃𝑡𝑡=0 = 0

Solution – Modified Loss Function

The traditional loss function seeks to minimize the predicted
value (Y) from the target/true value (T):

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑓𝑓(𝑌𝑌 − 𝑇𝑇)
However, we want to ensure that there is a notion that other
factors are important, such as the conservation of energy. In a
mechanical system like the pendulum the energy (E) can be
expressed as a sum of the kinetic and potential terms:

𝐸𝐸 =
1
2
𝑚𝑚𝜃̇𝜃2 + 𝑚𝑚𝑚𝑚(1 − cos(𝜃𝜃))

The new loss, therefore, is a function of the values Y,T
and the energy, E:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑓𝑓(𝑌𝑌 − 𝑇𝑇, 𝐸𝐸𝑌𝑌 − 𝐸𝐸𝑇𝑇)

classdef energyConsvLoss < nnet.layer.RegressionLayer

properties
% (Optional) Layer properties.

% Layer properties go here.
end

methods
function layer = energyConsvLoss(name)

% Creates a physics-based loss function
% that includes the conservation of Energy

% Layer constructor function goes here.
layer.Name = name;
layer.Description = 'MAE + Energy Conservation loss';

end

function loss = forwardLoss(layer, Y, T)
R = size(Y,3);

meanAbsoluteError = sum(abs(Y-T),3)/R;

% Take mean over mini-batch.
N = size(Y,4);
MAEloss = sum(meanAbsoluteError)/N;

% % Layer forward loss function goes here.
energy_system_pred = -9.81.*cos(Y(1,:)) + (1/2).*(Y(2,:).^2);
pred_energy = sum(energy_system_pred)/N;
energy_system_true = -9.81.*cos(T(1,:)) + (1/2).*(T(2,:).^2);
true_energy = sum(energy_system_true)/N;

e_factor = 1.0e-5;%e-8;%2*N;
L = 1;
energy_loss = e_factor*(abs(true_energy - pred_energy));
loss_mag = sqrt(energy_loss^2 + MAEloss^2);
loss = L*MAEloss*MAEloss/loss_mag + (1-

L)*energy_loss*energy_loss/loss_mag;

end

end
end

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (1 − 𝜆𝜆)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+ 𝜆𝜆 𝐸𝐸𝑌𝑌 − 𝐸𝐸𝑇𝑇|2
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑌𝑌 − 𝑇𝑇 2

layers = […
sequenceInputLayer(2)
fullyConnectedLayer(50);
reluLayer;
fullyConnectedLayer(100);
reluLayer;
fullyConnectedLayer(50);
reluLayer;
fullyConnectedLayer(2);
mse_energyConsvLoss('dE’);

];

Tools Used

Live scripts

Deep Learning Toolbox

Results – PIML Deep Learning

Input is position and velocity
Output is position and velocity
Network is acting like a time integrator

Training with the new PIML loss
function:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑌𝑌 − 𝑇𝑇 2

Dataset same as before.

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (1 − 𝜆𝜆)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚+ 𝜆𝜆 𝐸𝐸𝑌𝑌 − 𝐸𝐸𝑇𝑇|2

Results – PIML Deep Learning

𝜃𝜃𝑡𝑡=0 =
𝜋𝜋
2

𝜃̇𝜃𝑡𝑡=0 = 0

𝜃𝜃𝑡𝑡=0 =
𝜋𝜋
3

𝜃̇𝜃𝑡𝑡=0 = 0

𝜃𝜃𝑡𝑡=0 =
𝜋𝜋
6

𝜃̇𝜃𝑡𝑡=0 = 0

Predicted results no longer decay to the smallest
value. Energy is maintained for the prediction cycle

Takeaways - The Future of PIML
Physics-Informed Machine Learning is still very young but full of potential…

Traditional ML Physics-Informed ML

vs.
𝑥𝑥

𝑥̇𝑥
𝑥𝑥

𝑥̇𝑥
MATLAB-powered PIML-based design tools in biomedical
engineering

PIML-based loss functions for more robust
predictions in hybrid (simulation/data) systems

www.samraymond.com

Read More

https://www.mathworks.com/company/newsletters/articles/physics-informed-machine-learning-cloud-based-deep-learning-and-acoustic-patterning-for-organ-cell-growth-research.html?s_tid=srchtitle

Thank you!

Dr. Sam Raymond | Stanford University | sjray@stanford.edu

	Physics-Informed Machine Learning� Using the laws of nature to improve generalized deep learning models�
	Introduction - Fusing Data and Simulation
	Introduction – Fusing Data and Simulation
	Introduction – Physics Informed Machine Learning
	How well can we trust ML-infused physics?
	Slide Number 6
	Results – Conventional Deep Learning �
	Results – Conventional Deep Learning �
	Solution – Modified Loss Function
	Tools Used
	Results – PIML Deep Learning�
	Results – PIML Deep Learning�
	Takeaways - The Future of PIML
	Slide Number 14

