
Simulink® Check™
Support Package for CI/CD Automation for Simulink®

Check™ User's Guide

R2022b — R2024a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

CI/CD Automation for Simulink® Check™ User's Guide
© COPYRIGHT 2022-2024 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
August 2022 PDF Only Version 22.1.0 (R2022a)
September 2022 PDF Only Version 22.1.1
October 2022 PDF Only Versions 22.1.2 and 22.2.2 (R2022b)
November 2022 PDF Only Versions 22.1.3 and 22.2.3
December 2022 PDF Only Versions 22.1.4 and 22.2.4
February 2023 PDF Only Versions 22.1.5 and 22.2.5
March 2023 PDF Only Version 23.1.5 (R2023a)
April 2023 PDF Only Versions 22.1.6, 22.2.6, and 23.1.6
June 2023 PDF Only Versions 22.1.7, 22.2.7, and 23.1.7
July 2023 PDF Only Versions 22.1.8, 22.2.8, and 23.1.8
August 2023 PDF Only Versions 22.2.9, 23.1.9, and 23.2.0 (R2023b)
September 2023 PDF Only Versions 22.1.9, 22.2.10, and 23.1.10
October 2023 PDF Only Versions 22.1.10, 22.2.11, 23.1.11, and 23.2.1
November 2023 PDF Only Versions 22.1.11, 22.2.12, 23.1.12, and 23.2.2
December 2023 PDF Only Versions 22.1.12, 22.2.13, 23.1.13, and 23.2.3
February 2024 PDF Only Versions 22.1.13
March 2024 PDF Only Versions 22.2.14, 23.1.14, and 23.2.4
April 2024 PDF Only Version 24.1.1 (R2024a)
May 2024 PDF Only Versions 22.2.15, 23.1.15, 23.2.5, and 24.1.2
June 2024 PDF Only Versions 22.2.16, 23.1.16, 23.2.6, and 24.1.3
July 2024 PDF Only Versions 22.2.17, 23.1.17, 23.2.7, and 24.1.4

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

User's Guide
1

Fundamentals
2

MBD Pipeline . 2-2

Build System . 2-4

Process Advisor . 2-5

CI/CD System Integration . 2-7

Run Tasks with Process Advisor
3

Automate and Run Tasks with Process Advisor . 3-2
View and Modify Default Process . 3-2
Run Tasks and Review Results . 3-6
Identify Impact of Changes . 3-8
Re-Run Impacted Tasks with Incremental Build 3-10
Generate Build Report . 3-12
Explore Other Options . 3-12

Programmatically Run Tasks . 3-13
Run Tasks in Pipeline . 3-13
View Available Tasks in Pipeline . 3-13
Generate Build Report . 3-14

Specify Settings for Process Advisor and Build System 3-16
Project Settings . 3-16
User Settings . 3-17

Incremental Builds . 3-19
How to Disable Incremental Builds . 3-19

Locally Reproduce Issues Found in CI . 3-22

iii

Contents

Customize Your Process Model
4

Modify Default Process Model to Fit Your Process 4-2
Create Process for Project . 4-2
Inspect Default Process Model . 4-2
Section A — Add or Remove Built-In Tasks . 4-4
Section B — Change Behavior of Built-In Tasks . 4-5
Section C — Specify Dependencies Between Tasks 4-6
Section D — Specify Preferred Task Execution Order 4-7

Overview of Process Model Customizations . 4-9
Create Process Model . 4-9
Add Tasks to Process . 4-9
Specify Task Relationships . 4-10
Find Specific Artifacts Using Queries . 4-11
Built-In Tasks . 4-13
Custom Tasks . 4-14
Built-In Queries . 4-14
Custom Queries . 4-16
Use Your Process . 4-16

Reconfigure Built-In Tasks . 4-17
Change Task Behavior . 4-17
Change How Often Tasks Run . 4-18
Add Inputs to Tasks . 4-20
Create Multiple Instances of Tasks . 4-22
Turn Off Change Tracking for Input Artifacts . 4-24
Turn Off Change Tracking for Task Outputs . 4-25
Handling Untracked Dependencies . 4-26

Define Task Relationships . 4-27
Task Relationships . 4-27
Specify Dependencies Between Tasks . 4-28
Specify Preferred Task Order . 4-29

Create Custom Tasks . 4-32
Custom Task that Runs Existing Script . 4-32
Custom Task for Specialized Functionality . 4-32
Example Custom Tasks . 4-39

Find Artifacts by Creating Custom Queries . 4-42
Choose Superclass for Custom Query . 4-42
Define and Use Custom Query in Process . 4-42
Example Custom Queries . 4-44
Hide File Extension in Process Advisor . 4-45
Sort Artifacts in Specific Order . 4-46

Test Tasks and Queries . 4-48

Group Tasks Using Subprocesses . 4-50
Subprocess Boundaries . 4-51
Handling Invalid Dependencies . 4-51

iv Contents

Manage Different Build and Verification Workflows Using Processes . . 4-54
Default Process . 4-54
Overview of Processes . 4-55
Define New Process . 4-55

Example Process Models . 4-60
Add One Built-In Task and One Custom Task . 4-60
Specify a Task Execution Order . 4-60
Include Multiple Instances of a Task . 4-61
Specify Tools that Custom Task Can Launch . 4-61

Best Practices for Process Model Authoring . 4-64
Manage Process Model File . 4-64
Share Queries . 4-64

Troubleshoot Missing Tasks, Artifacts, and Dependencies 4-66
Troubleshooting Missing Tasks or Artifacts . 4-66
Limitations on Incremental Build . 4-68
Other Limitations . 4-70
Analyze Project From Scratch . 4-71

Integrate into CI Systems
5

Approaches to Running Processes in CI . 5-2
Before You Integrate . 5-2
GitHub . 5-2
GitLab . 5-3
Jenkins . 5-3
Other Platforms . 5-4

Integrate into GitHub . 5-5

Integrate into GitLab . 5-7
Connect Your Project and GitLab . 5-7
Perform One-Time Setup of GitLab Template . 5-7
Generated Pipeline in GitLab . 5-9

Integrate into Jenkins . 5-10
Integrate Using Default Options . 5-10
Customize Downstream Pipeline . 5-13

Integrate into Other CI Platforms . 5-18
Run MATLAB in Batch Mode . 5-18
Generate and Run Pipeline Using runprocess Function 5-18

How Automatic Pipeline Generation Works . 5-19
Summary of Support . 5-19
Initial Setup . 5-20
Automatically Generated Pipelines . 5-21
Optional Pipeline Customization . 5-21
Parallel Pipeline Architectures . 5-23

v

Tips for Setting Up CI Agents . 5-26
Set Up Virtual Display Machines Without Displays 5-26
Create Docker Container for Support Package . 5-28
Dry-Run Your Process . 5-29

Best Practices for Effective Builds . 5-30
Use Incremental Builds for Regular Submissions 5-30
Run Full Builds for Qualifying Software . 5-30
Cache Models and Other Artifacts Used During Build 5-30

Version History
6

July 2024 . 6-2
Features . 6-2

June 2024 . 6-4
Features . 6-4

May 2024 . 6-7
Features . 6-7

April 2024 . 6-10

March 2024 . 6-11
Features . 6-11

February 2024 . 6-17
Features . 6-17

December 2023 . 6-20

November 2023 . 6-22

October 2023 . 6-24

September 2023 . 6-26

August 2023 . 6-28

July 2023 . 6-29

June 2023 . 6-30

April 2023 . 6-33

March 2023 . 6-36

February 2023 . 6-37

December 2022 . 6-38

vi Contents

November 2022 . 6-39

October 2022 . 6-40

September 2022 . 6-41

August 2022 . 6-42

vii

User's Guide

The support package CI/CD Automation for Simulink Check provides tools to help you integrate your
model-based process into a Continuous Integration / Continuous Delivery (CI/CD) system.

The support package provides:

• A customizable process modeling system that you can use to define your build and verification
process

• A build system that can efficiently execute a pipeline in your CI system
• The Process Advisor app for deploying and automating your prequalification process
• Integration with common CI systems, including a pipeline generator to automatically create child

pipeline files in CI

You can use the support package to help you set up a model-based design (MBD) pipeline, reduce
build time, reduce build failures, debug build failures, and deploy a consistent build and verification
process. For an overview of these features, see the chapter "Fundamentals".

This PDF is a User's Guide with general information and examples. For information on the API,
artifact types, built-in tasks, and built-in queries, see the Reference Book PDF. You can access the
PDFs from:

• https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-
check

• The question mark icon in the Process Advisor app

Where to Get Started

If you are a:

• Model developer or test engineer, you might want to start with “Automate and Run Tasks with
Process Advisor” on page 3-2.

• Process engineer, you might want to start with “Overview of Process Model Customizations” on
page 4-9

• DevOps engineer, you might want to start with "Integrate into CI" and information for your CI
system:

• “Integrate into GitHub” on page 5-5
• “Integrate into GitLab” on page 5-7
• “Integrate into Jenkins” on page 5-10

1

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

• “Integrate into Other CI Platforms” on page 5-18

Note For information on the supported releases, features, and compatibility considerations, see
“Version History”.

1 User's Guide

1-2

Fundamentals

• “MBD Pipeline” on page 2-2
• “Build System” on page 2-4
• “Process Advisor” on page 2-5
• “CI/CD System Integration” on page 2-7

2

MBD Pipeline
In a typical CI/CD pipeline, the CI/CD system automatically builds your source code, performs testing,
packages deliverables, and deploys the packages to production. With the support package CI/CD
Automation for Simulink Check, you can create a pipeline for the steps in your build and verification
process, and maintain a repeatable CI/CD process for model-based design. For example, you can
create an MBD pipeline that checks modeling standards, runs tests, generates code, and performs a
custom task.

You can use the customizable process modeling system to define the steps in your model-based design
(MBD) pipeline. You define the steps by using a process model. A process model is a MATLAB® script
that specifies the tasks in the CI/CD process, dependencies between the tasks, and artifacts that you
associate with each task.

A task is a single step in your process. Tasks can accept your project artifacts as inputs, perform
actions, generate pass, fail, or warning assessments, and return project artifacts as outputs.

The support package contains built-in tasks for several common steps, including:

• Creating Simulink web views for your models with Simulink Report Generator™
• Checking modeling standards with the Model Advisor
• Comparing models to ancestors and generating a comparison report
• Running tests with Simulink Test™
• Detecting design errors with Simulink Design Verifier™
• Generating a System Design Description (SDD) report with Simulink Report Generator
• Generating code with Embedded Coder®

• Checking coding standards with Polyspace® Bug Finder™ and Polyspace Code Prover™
• Inspecting code with Simulink Code Inspector™
• Generating a consolidated test results report and a merged coverage report with Simulink Test

and Simulink Coverage™

Tip You can view the source code for the built-in tasks. After installing the support package, the
built-in task source code is available in the support package folder. In the MATLAB Command
Window, enter:

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","build_service","ml","+padv","+builtin","+task"))

2 Fundamentals

2-2

This command changes the current working folder to the directory that contains the built-in task
source code.

The support package contains a default process model for an MBD pipeline, but you can also
customize the default process model to fit your development workflow goals. For example, your
process model might include the built-in tasks for checking modeling standards, running tests, and
generating code before performing a custom task. You can customize the process model to add or
remove tasks in the MBD pipeline. You can also reconfigure the tasks in your process model to
change what action a task performs or how a task performs the action.

For more information on the process modeling system, see “Overview of Process Model
Customizations” on page 4-9. For information on the built-in tasks, see the "Built-In Task Library"
in the Reference Book PDF.

 MBD Pipeline

2-3

Build System
The support package CI/CD Automation for Simulink Check provides a build system that you can use
to orchestrate and automate the steps in your MBD pipeline. The build system is software that can
orchestrate tasks, efficiently execute tasks in the pipeline, and perform other actions related to the
pipeline.

The build system needs:

1 A project to analyze
2 A process model in the project that defines the tasks in the pipeline

If the project does not contain a process model, the build system copies the default process model
into the project and uses the default process model to define a default MBD pipeline.

When you call the build system, the build system loads the process model, analyzes the project, and
orchestrates the creation of a pipeline of tasks.

To run the tasks in the pipeline, you can call the build system using one of these approaches:

• In a CI environment by using the build system API. The build system API includes a function
runprocess that you can use to run the tasks in a pipeline.

• Locally on your machine by using either the build system API or the Process Advisor app. Process
Advisor is a user interface that can call the build system and has run buttons that you can use to
run the tasks in a pipeline. When there is a failure in the CI environment, you can reproduce the
issue locally by using Process Advisor on your local machine.

The build system supports incremental builds. If you change an artifact in your project, the build
system can detect the change and automatically determine which of the tasks in your MBD pipeline
now have outdated results. In your next build, you can instruct the build system to run only the tasks
with outdated results. By identifying the tasks with outdated results, the build system can help you
reduce build time by reducing the number of tasks you need to re-run after making changes to your
project artifacts.

Note There are limitations to the types of changes that the support package can detect. For more
information, see “Limitations on Incremental Build” on page 4-68.

2 Fundamentals

2-4

Process Advisor
A prequalification process can help you prevent build and test failures from occurring in your CI/CD
system. Use the Process Advisor desktop app to deploy and automate your prequalification process.
You can use the app to run the tasks in your MBD pipeline and to prequalify your changes on your
machine before submitting to source control. Process Advisor is a user interface that runs your tasks
locally for prequalification. You can run the tasks in your MBD pipeline and to check your progress
towards completing tasks in your prequalification pipeline.

If you make a change to an artifact in your project, Process Advisor can detect the change and
automatically determine the impact of the change on your existing task results. For example, if you
complete a task but then update your model, the Process Advisor automatically invalidates the task
completion and marks the task results as outdated.

Note There are limitations to the types of changes that Process Advisor can detect. For more
information, see “Limitations on Incremental Build” on page 4-68.

 Process Advisor

2-5

For information on Process Advisor, see “Automate and Run Tasks with Process Advisor” on page 3-
2.

2 Fundamentals

2-6

CI/CD System Integration
You can use the support package CI/CD Automation for Simulink Check to integrate your model-based
design process into common CI/CD systems.

Typically, when you configure a CI pipeline, you need to manually create and update pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the support
package provides a pipeline generator function (padv.pipeline.generatePipeline) and example
pipeline configuration files that you can use to automatically generate the CI pipelines for you. After
you do the initial setup for the pipeline generator, you no longer need to manually update your
pipeline configuration files. When you trigger your pipeline, the pipeline generator uses the digital
thread to analyze the files in your project and uses your process model to automatically generate
pipeline configuration files for you.

For example, if your process model contains two tasks, TaskA and TaskB, the pipeline generator can
automatically create a child pipeline that runs the tasks, generates a report, and collects the output
artifacts from the CI jobs.

The pipeline generator supports these CI platforms:

• GitHub® — For instructions, see “Integrate into GitHub” on page 5-5.
• GitLab® — For instructions, see “Integrate into GitLab” on page 5-7.
• Jenkins® — For instructions, see “Integrate into Jenkins” on page 5-10.

For information on how to integrate the support package into other CI platforms, see “Integrate into
Other CI Platforms” on page 5-18.

The support package also contains an example Dockerfile for creating a Docker® container to run
MATLAB with the support package and other MathWorks® products. For information, see “Create
Docker Container for Support Package” on page 5-28.

 CI/CD System Integration

2-7

Run Tasks with Process Advisor

• “Automate and Run Tasks with Process Advisor” on page 3-2
• “Programmatically Run Tasks” on page 3-13
• “Specify Settings for Process Advisor and Build System” on page 3-16
• “Incremental Builds” on page 3-19
• “Locally Reproduce Issues Found in CI” on page 3-22

3

Automate and Run Tasks with Process Advisor
You can automate common tasks in your model-based development and verification workflow by using
the support package CI/CD Automation for Simulink Check. The support package contains a default
process model with built-in tasks for performing common activities like checking modeling standards
with Model Advisor, running tests with Simulink Test, and generating code with Embedded Coder. You
can view, edit, and run these tasks from the Process Advisor app or by using the Process Advisor
function runprocess.

This example shows how to:

• View and modify the default process model to fit your development process
• Run tasks and review results by using Process Advisor
• Identify the impact of a change and incrementally re-run impacted tasks
• Generate a build report that summarizes the task results

View and Modify Default Process
You can define development and verification processes for a project by using a script called a process
model. Process Advisor automatically reads the process model and uses the file to determine which
tasks to run, how the tasks perform their actions, and in which order the tasks need to run. If your
project does not already have a process model, Process Advisor automatically opens a default process
model file that uses built-in tasks to perform common model-based design activities. You can edit the
process model to add, remove, or reconfigure the tasks in the process.

1 Open a project that contains your files. If you do not have a project, see “Create Projects” or
open an example project by entering:

openExample('simulink/UsingAProjectExample')
2 Open Process Advisor. On the Project tab, in the Tools section, click Process Advisor or enter:

processAdvisorWindow

Process Advisor opens in a standalone window. If Process Advisor needs to perform an initial
analysis on your project, the app shows the Enable Artifact Tracing dialog box. Click Enable and
Continue.

The tasks defined in the process model appear in the Tasks column in Process Advisor. The
default process model contains built-in tasks for several common tasks like checking modeling
standards with Model Advisor, running tests with Simulink Test, and generating code with
Embedded Coder.

3 Run Tasks with Process Advisor

3-2

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

3 To view information about a task, point to the task in the Tasks column and click on the
information icon . When you click on the information icon, you can view the task description.

 Automate and Run Tasks with Process Advisor

3-3

4 You can add or remove tasks from the process by editing the process model. Inspect and edit the
process model by clicking the Edit button in the toolstrip. Process Advisor opens the process
model file, processmodel.m, in the MATLAB Editor.

You can add or remove built-in tasks from the process by setting the variable associated with a
built-in task to true or false. For example, to add the built-in task for design error detection to
your process, you can update the code to specify includeDesignErrorDetectionTask as
true.

%%%
%% Include/Exclude Tasks in processmodel
%%%

includeModelMaintainabilityMetricTask = true;
includeModelTestingMetricTask = true;
includeModelStandardsTask = true;
includeDesignErrorDetectionTask = true;
includeModelComparisonTask = false;
includeSDDTask = true;
includeSimulinkWebViewTask = true;
includeTestsPerTestCaseTask = true;
includeMergeTestResultsTask = true;
includeGenerateCodeTask = true;
includeAnalyzeModelCode = true && && exist('polyspaceroot','file');
includeProveCodeQuality = true && (~isempty(ver('pscodeprover')) ...
 || ~isempty(ver('pscodeproverserver')));
includeCodeInspection = false;

Each variable is associated with a task in the default process model.

Variable in Default Process
Model

Task Title Built-In Task

includeModelMaintainabilit
yMetricTask

Collect Model Maintainability
Metrics

padv.builtin.task.CollectM
etrics

includeModelTestingMetricT
ask

Collect Model Testing Metrics padv.builtin.task.CollectM
etrics

includeModelStandardsTask Check Modeling Standards padv.builtin.task.RunModel
Standards

includeDesignErrorDetectio
nTask

Detect Design Errors padv.builtin.task.DetectDe
signErrors

includeModelComparisonTask Generate Model Comparison padv.builtin.task.Generate
ModelComparison

includeSDDTask Generate SDD Report padv.builtin.task.Generate
SDDReport

includeSimulinkWebViewTask Generate Simulink Web View padv.builtin.task.Generate
SimulinkWebView

includeTestsPerTestCaseTas
k

Run Tests padv.builtin.task.RunTests
PerTestCase

includeMergeTestResultsTas
k

Merge Test Results padv.builtin.task.MergeTes
tResults

3 Run Tasks with Process Advisor

3-4

Variable in Default Process
Model

Task Title Built-In Task

includeGenerateCodeTask Generate Code padv.builtin.task.Generate
Code

includeAnalyzeModelCode Check Coding Standards padv.builtin.task.AnalyzeM
odelCode

includeProveCodeQuality Prove Code Quality padv.builtin.task.AnalyzeM
odelCode

includeCodeInspection Inspect Code padv.builtin.task.RunCodeI
nspection

5 After you finish making changes to the process model, you can view the updated list of tasks in
Process Advisor by returning to the Process Advisor window and, in the warning banner, clicking
Refresh Tasks.

Process Advisor refreshes to reflect the updated process model. The Tasks column now includes
a task for Detect Design Errors.

6 You can view the source code for a built-in task by pointing to the task and clicking ... > Edit
Task.

 Automate and Run Tasks with Process Advisor

3-5

Each built-in task has a default behavior, but you can reconfigure the task to perform differently by
specifying different property values for the task object in the process model. You can also create your
own custom tasks with custom behaviors. For more information, see “Customize Your Process Model”.

Run Tasks and Review Results
You can run tasks either from the Process Advisor app or by using the Process Advisor function
runprocess.

1 To run a task on a specific artifact, you can point to that task iteration and click the run button.
In the Tasks column, under Collect Model Maintainability Metrics, point to the model name
AnalogControl and click the run button .

The Collect Model Maintainability Metrics task runs on the current model. Process Advisor
logs task activity in the MATLAB Command Window. When the task runs successfully, the status
in the Tasks column shows a green circle with a check mark . When you point to the status
icon, you can view details about the status, including the task status and how long the task took
to run.

2
If you point to the file icon in the I/O column, the pop-up shows hyperlinks to the outputs
from the task, and inputs and dependencies for the task. In the Details column, you can see that
the task successfully output a model maintainability report.

You can click the hyperlink to open and view the report.

3 Run Tasks with Process Advisor

3-6

If you want the task to generate a different report format, like HTML, or to only collect specific
metrics, you can reconfigure the task to change the task behavior. For more information, see
“Customize Your Process Model”.

3 To view the metric results directly in the Model Maintainability Dashboard, you can point to the
task iteration, click ... > Open Dashboard.

The task automatically collects metric results that describe the size, complexity, and architecture
of the model and those metric results appear in the dashboard.

4 To run a task on each of the artifacts, point to the task title and click the run button . Collect
model maintainability metrics for each model in the project by clicking the run button for the
task Collect Model Maintainability Metrics.

Process Advisor highlights and runs the necessary task and the task iterations. If the Collect
Model Maintainability Metrics task depended on results from other tasks, Process Advisor
would automatically run those tasks first.

 Automate and Run Tasks with Process Advisor

3-7

Process Advisor aggregates the results of each task. In the Details column, Process Advisor
shows the number of passing, warning, or failing results:

• A green check mark indicates a passing result.
• An orange triangle indicates a warning result.
• A red "X" indicates a failing result.

In this example, the Collect Model Maintainability Metrics task successfully collected the
model maintainability metrics for 7 models, so the Details column shows a value of 7 next to the
green check mark for the task.

The task options menu and Process Advisor toolstrip have additional options for running each of the
tasks in your process, cleaning tasks to clear results and delete outputs, and other functionalities. For
more information, see Process Advisor.

Identify Impact of Changes
If you make a change to an artifact in your project, Process Advisor can detect the change and
automatically determine the impact of the change on your existing task results. For example, if you
make a change to an artifact or its dependencies, certain task results are no longer up-to-date.
Process Advisor can automatically identify the impacted task results and invalidate the task
completion by marking the task results as outdated.

1 Open the AnalogControl model in the project by clicking the model name in the Tasks column.
The artifact names shown in the Tasks column are hyperlinks to the artifacts.

3 Run Tasks with Process Advisor

3-8

Note that a model-specific view of Process Advisor is available in a pane to the left of the
Simulink canvas. You can use either view to interact with your tasks, but this example uses the
standalone window instead. For more information, see Process Advisor.

2 In Simulink, make a change to the AnalogControl model and save the model. For this example,
you can click and drag a block to a different part of the Simulink canvas, save, and close the
model.

Process Advisor automatically detects the change to the project file and prompts you to refresh
the tasks by using the Refresh Tasks button in the warning banner.

3 View the updated task statuses in the standalone Process Advisor window by clicking Refresh
Tasks.

Process Advisor marks the task statuses for both the AnalogControl model and the
slproject_f14 model as outdated.

4
For the slproject_f14 task iteration, point to the file icon in the I/O column.

Process Advisor shows that the app marked the task results for slproject_f14 model as
outdated because the slproject_f14 depends on the AnalogControl model. When the task
results for AnalogControl became outdated due to a change, that invalidated the task results
for the parent model slproject_f14.

 Automate and Run Tasks with Process Advisor

3-9

Note There are limitations to the types of changes that the Process Advisor can detect. For more
information, see “Limitations on Incremental Build” on page 4-68. Note that sometimes the warning
banner might appear while you are running tasks or after you have finished running tasks, depending
on when file system events reach MATLAB.

Re-Run Impacted Tasks with Incremental Build
By default, Process Advisor can re-run tasks with outdated results and automatically skip tasks that
are up-to-date. These incremental builds can help you reduce run times by reducing the number of
tasks that you need to re-run after making changes to your project artifacts to only re-run tasks that
were impacted by the change. The task status icons in the Tasks column indicate whether the task
results are up-to-date or outdated. Up-to-date task results have task status icons that are green for

3 Run Tasks with Process Advisor

3-10

tasks that pass and red for tasks that fail or generate errors. Outdated task results have task status
icons that are gray.

If you want Process Advisor to always force tasks to re-run, you can turn off incremental builds by
clicking Settings in the toolstrip and clearing the Incremental build checkbox. For more
information about settings, see “Specify Settings for Process Advisor and Build System” on page 3-
16.

1 Get updated task results by re-running the Collect Model Maintainability Metrics task. Point
to the task and click the run button .

Process Advisor automatically re-runs the Collect Model Maintainability Metrics task for the
models with outdated results, AnalogControl and slproject_f14, and skips the other models
because those results are still up-to-date.

2 In the MATLAB Command Window, you can find a summary of which tasks were run or skipped at
the end of the log.

#####################
Ending Process Advisor build at 31-May-2024 17:45:05
Duration: 00:00:08
Build Status: Pass
Number of tasks: 7
Number of tasks executed: 2
Number of tasks skipped: 5
Number of tasks in queue: 0
Number of tasks failed: 0
Tasks that were skipped:(Status::Task::IterationArtifact)
Pass::padv.builtin.task.CollectMetrics::models/DigitalControl.slx
Pass::padv.builtin.task.CollectMetrics::models/LinearActuator.slx
Pass::padv.builtin.task.CollectMetrics::models/NonLinearActuator.slx
Pass::padv.builtin.task.CollectMetrics::models/f14_airframe.slx
Pass::padv.builtin.task.CollectMetrics::models/vertical_channel.slx
#####################

 Automate and Run Tasks with Process Advisor

3-11

Generate Build Report
You can generate a build report that summarizes the Process Advisor task statuses, task results, and
other information about the task execution. In the MATLAB Command Window, enter:

rptObj = padv.ProcessAdvisorReportGenerator;
generateReport(rptObj)

The report generates in your current working folder. The
padv.ProcessAdvisorReportGenerator object represents your report settings and you can
modify the object to specify different report file formats like PDF and HTML and to change the output
directory.

For more information, see “Generate Build Report” on page 3-14.

Explore Other Options
You can use Process Advisor automate and run tasks on your machine and deploy a consistent
development and verification process across your team. If you use source control and continuous
integration (CI) for your project, you can also use Process Advisor as part of your prequalification
process to make sure your team runs specific tasks before submitting their changes to source control.
Having a consistent process, defined by the process model, can help your team prevent build and test
failures in CI.

Use this table to find more information based on your goals.

Goal Related Information
Learn more about the Process Advisor app. Process Advisor
Customize the pipeline of tasks by reconfiguring
the built-in tasks, removing tasks, and adding
custom tasks.

“Customize Your Process Model”

Integrate into a continuous integration (CI)
system.

“Integrate into CI Systems”

Debug failures seen in CI. “Locally Reproduce Issues Found in CI” on page
3-22

See Also
Process Advisor | generateReport | runprocess

3 Run Tasks with Process Advisor

3-12

Programmatically Run Tasks
With the support package CI/CD Automation for Simulink Check, you can run the tasks in your
development and verification process by using the Process Advisor app on your local desktop or the
Process Advisor function runprocess. Both of these approaches invoke the same incremental build
system so that you can have consistent task execution across different environments like local
desktop machines and continuous integration (CI) agents.

By default, if you use the runprocess function without specifying any name-value arguments,
runprocess(), the function runs each of the tasks associated with the current project and process
model. This behavior is equivalent to clicking the Run All button in the Process Advisor app.

However, you often only want to run certain tasks or only run certain tasks on certain artifacts.

This example shows how you can run tasks on a project programmatically by using the runprocess
function with other supporting functions. You can call these commands on your local desktop and
from CI agents. For more information on running tasks with Process Advisor, see Process Advisor.

Run Tasks in Pipeline
You can run tasks programmatically by using the runprocess function.

Run All Tasks

To run each of the tasks associated with the current project, enter:

runprocess()

Run Specific Task

To only run a specific set of tasks, provide the task names to the Tasks argument. For example:

% run the Generate Simulink Web View task
% and the Check Modeling Standards tasks
runprocess(...
Tasks = ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"])

Run Tasks for Specific Artifact

To only run the tasks associated with a specific artifact, use the FilterArtifact argument. For
example, to run tasks for the AHRS_Voter model, you can specify the value as the relative path to the
model:

% run only the AHRS_Voter tasks
runprocess(...
FilterArtifact = fullfile(...
"02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

For more information, see the function runprocess.

View Available Tasks in Pipeline
• Use the generateProcessTasks function to return a list of the available tasks in the current

process model.

 Programmatically Run Tasks

3-13

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

generateProcessTasks
• List a set of specific tasks by using the FilterArtifact argument. For example, you can specify

the relative path to a model and list the associated tasks.

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% find the tasks associated with the model AHRS_Voter
ahrsVoterTasks = generateProcessTasks(FilterArtifact=model)

Generate Build Report
You can generate a report that summarizes the build results for the tasks that you run in your
pipeline.

The report includes a:

• Summary of task statuses
• Summary of task results
• Details about the task configuration and execution

For example, if you run the tasks in the default MBD pipeline, the report provides an overview of the:

• Model Advisor analysis, including the number of passing, warning, and failing checks
• Test results, organized by iteration
• Generated code files
• Coding standards checks

Generate Report After Running Process

To automatically generate a report after you run your process, specify the GenerateReport
argument of the runprocess function as true:

runprocess(GenerateReport = true)

By default, the report generates as a PDF file in the current working directory. You can use the
ReportFormat and ReportPath arguments to specify a different report format and a different
report name or full file path:

runprocess(GenerateReport = true,...
ReportFormat = "html-file",...
ReportPath = fullfile(pwd,"folderName","reportName"))

Generate Report from Recent Task Results

After you run the tasks in your pipeline, you can also generate a report using the most recent task
results.

After you run a task, create a padv.ProcessAdvisorReportGenerator report object.

rptObj = padv.ProcessAdvisorReportGenerator;

Run generateReport on the report object to generate a build report in the current directory.

3 Run Tasks with Process Advisor

3-14

generateReport(rptObj)

By default, the report generator generates a PDF. To generate an HTML report, specify the Format of
the ProcessAdvisorReportGenerator object as html-file.

htmlReport=padv.ProcessAdvisorReportGenerator(Format="html-file");
generateReport(htmlReport);

Note Alternatively, you can specify GenerateReport as true when you use runprocess:
runprocess(GenerateReport = true).

 Programmatically Run Tasks

3-15

Specify Settings for Process Advisor and Build System
There are several settings that you can use to customize the behavior of Process Advisor and its build
system. These behaviors impact how the Process Advisor app and runprocess function run tasks,
cache information, and log results. For example, you can use settings to use incremental builds,
enable model caching, and customize other behaviors.

You can access and change settings by clicking the Settings button in the Process Advisor toolstrip
and selecting or clearing the check boxes for individual settings.

There are two types of settings:

• Project Settings — These settings are stored in the project and are shared with everyone using
this project.

• User Settings — These settings only apply to the current user.

Project Settings
Setting Usage
Incremental build Select this setting to allow the build system to

automatically detect changes and mark task
results as outdated.

Default: On
Enable model caching Select this setting to allow the build system to

cache models during builds.

Default: Off
Suppress outputs to command window Select this setting to suppress the build log and

task execution messages in the MATLAB
Command Window. This setting only applies when
MATLAB is in interactive mode, not batch mode.

Default: Off

3 Run Tasks with Process Advisor

3-16

Setting Usage
Show file extensions Select this setting to show file extensions for all

task iteration artifacts in the Tasks column in
Process Advisor.

To keep file extensions in the results for a specific
query, you can specify the query property
ShowFileExtension as true. For information,
see padv.Query.

Default: Off
Untracked dependency behavior Build system behavior when there are untracked

I/O files, specified as either:

• "Allow" — Do not generate warnings or
errors for untracked I/O files.

• "Warn" — Generate a warning if a task has
untracked I/O files.

• "Error" — Generate an error if a task has
untracked I/O files.

If you make a change to an untracked file,
Process Advisor and the build system do not mark
the task as outdated.

Default: Warn

For additional settings and information, see padv.ProjectSettings.

User Settings

Setting Usage
Detect duplicate outputs Select this setting to allow the build system to

generate an error message when multiple tasks
attempt to write to the same output file.

Default: On
Garbage collect task outputs Select this setting to allow the build system to

automatically clean task results for tasks and
artifacts that do not match the current process
model or project.

Default: On
Show detailed error messages Select this setting to allow the build system to

show more information in error messages. By
default, error messages from the build system are
not verbose.

Default: Off

 Specify Settings for Process Advisor and Build System

3-17

Setting Usage
Add process model as dependency Select this setting to add the process model file

as a dependency.

By default, if you make a change to the process
model file, the build system marks each task
status and task result as outdated because the
tasks in the updated process model might not
match the tasks that generated the task results
from the previous version of the process model.

If you do not want changes to the process model
to make task statuses and task results outdated,
clear this setting.

Default: On

For additional settings and information, see padv.UserSettings.

3 Run Tasks with Process Advisor

3-18

Incremental Builds
By default, the build system and the Process Advisor app perform incremental builds. Incremental
builds can help you reduce the number of task iterations that you need to re-run by identifying and
running only the task iterations with outdated results. If the task iteration results are up-to-date, the
build system and the Process Advisor app skip the task iteration.

When incremental builds are enabled, the task status icons in the Tasks column indicate whether the
task results are up-to-date or outdated. Up-to-date task results have task status icons that are green
for tasks that pass and red for tasks that fail or generate errors. Outdated task results have task
status icons that are gray.

How to Disable Incremental Builds
If you want to force the build system and the Process Advisor app to re-run task iterations, you can
disable incremental builds for the project. When you disable incremental builds, the build system and
the Process Advisor app do not identify results as up-to-date or outdated, and effectively force run
task iterations in the project.

To disable incremental builds, open the Process Advisor app and, in the toolstrip, click Settings and
clear Incremental build.

 Incremental Builds

3-19

The incremental build setting is stored in the project and is shared with everyone using the project.

When incremental builds are disabled, the task status icons in the Tasks column appear in black and
white because the app is not showing which results are up-to-date or outdated. These statuses only
indicate whether the task passed, failed, generated an error, or did not run.

3 Run Tasks with Process Advisor

3-20

 Incremental Builds

3-21

Locally Reproduce Issues Found in CI
After you run a pipeline in your CI system, you can find issues in your artifacts that you need to fix on
your local machine. You can copy results from CI jobs onto your local machine by cloning a copy of
the project that you ran in CI and copying the latest job artifacts.

To copy CI results onto your machine:

1 Get the latest changes by cloning a copy of the project onto your local machine. For information,
see “Clone Git Repository”.

2 Close your local copy of the project.
3 In your CI system, open the job that you want to inspect locally and download the artifacts that

the job generated. If you are using the pipeline generator,
padv.pipeline.generatePipeline, the Collect_Artifacts job automatically collects and
compresses the build artifacts from your pipeline into a ZIP file that you can download.

For example, in GitLab, you can use either the GitLab UI or API to download job artifacts: https://
docs.gitlab.com/ee/ci/pipelines/job_artifacts.html#download-job-artifacts

Job artifacts typically download as a ZIP file.
4 Extract the files from the ZIP file and copy the artifacts into your local copy of the project. The

copied artifacts do not need to be added to the MATLAB path or project path.
5 Open your local copy of the project in MATLAB.
6 Open the Process Advisor app. If you see a warning banner, click Refresh Tasks.

After you refresh the tasks, you can:

• See the task results from the CI job in your local Process Advisor app
• Re-run tasks locally to reproduce the CI failure on your local machine
• Make changes to your project to fix the issues observed in CI
• Re-run tasks locally to confirm that you resolve open issues before submitting to source control

Note If you use a parallel pipeline architecture like IndependentModelPipeline in releases older
than R2023b Update 5, each parallel pipeline generates separate artifact database files,
artifacts.dmr, for each parallel branch. The build system and Process Advisor app can only load
one artifacts.dmr file at a time, so if you try to view the generated task statuses and results on
your local machine, you see incomplete or outdated task statuses.

Starting in R2023b Update 5, the pipeline generator supports a round-trip, parallel CI workflow that
automatically merges the task statuses and project analysis from across the parallel branches. For
information, see “Parallel Pipeline Architectures” on page 5-23.

3 Run Tasks with Process Advisor

3-22

https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html#download-job-artifacts
https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html#download-job-artifacts

Customize Your Process Model

• “Modify Default Process Model to Fit Your Process” on page 4-2
• “Overview of Process Model Customizations” on page 4-9
• “Reconfigure Built-In Tasks” on page 4-17
• “Define Task Relationships” on page 4-27
• “Create Custom Tasks” on page 4-32
• “Find Artifacts by Creating Custom Queries” on page 4-42
• “Test Tasks and Queries” on page 4-48
• “Group Tasks Using Subprocesses” on page 4-50
• “Manage Different Build and Verification Workflows Using Processes” on page 4-54
• “Example Process Models” on page 4-60
• “Best Practices for Process Model Authoring” on page 4-64
• “Troubleshoot Missing Tasks, Artifacts, and Dependencies” on page 4-66

4

Modify Default Process Model to Fit Your Process
When your team has a standard process for local prequalification and CI builds, you can efficiently
enforce guidelines and make collaboration easier. This example shows how to reconfigure the default
process model to create a consistent, repeatable process that you can deploy to your team. In this
example, you take the default process model and modify the tasks and queries to fit your
requirements.

For more information about the process model, see “Overview of Process Model Customizations” on
page 4-9.

Create Process for Project
Before you create a process model, make sure your files are inside a project. For information on how
to create a project, see “Create Projects”.

You can create a process model for your project by using either the:

• Process Advisor app — If your project does not have a process model, Process Advisor
automatically copies the default process model into your project.

• createprocess function — You can use this function to access different process model
templates, including the default process model.

createprocess(Template="default")

Inspect Default Process Model
Inspect the default process model by opening the Process Advisor app and clicking the Edit button

.

The default process model has four main sections. In the following diagram, the letters A, B, C, and D
indicate the location of the sections in the default process model.

4 Customize Your Process Model

4-2

 Modify Default Process Model to Fit Your Process

4-3

Section A — Add or Remove Built-In Tasks
In the default process model, you can add or remove tasks from the process by setting the variable
associated with a task to true or false.

%%%
%% Include/Exclude Tasks in processmodel
%%%

includeModelMaintainabilityMetricTask = true;
includeModelTestingMetricTask = true;
includeModelStandardsTask = true;
includeDesignErrorDetectionTask = false;
includeModelComparisonTask = false;
includeSDDTask = true;
includeSimulinkWebViewTask = true;
includeTestsPerTestCaseTask = true;
includeMergeTestResultsTask = true;
includeGenerateCodeTask = true;
includeAnalyzeModelCode = true && && exist('polyspaceroot','file');
includeProveCodeQuality = true && && (~isempty(ver('pscodeprover'))...
 || ~isempty(ver('pscodeproverserver')));
includeCodeInspection = false;

4 Customize Your Process Model

4-4

For example, to add the design error detection task to your process, you can change that line in the
processmodel.m file to specify:

includeDesignErrorDetectionTask = true;

Each variable is associated with a task in the default process model.

Variable in Default Process
Model

Task Title Built-In Task

includeModelMaintainability
MetricTask

Collect Model Maintainability
Metrics

padv.builtin.task.CollectMe
trics

includeModelTestingMetricTa
sk

Collect Model Testing Metrics padv.builtin.task.CollectMe
trics

includeModelStandardsTask Check Modeling Standards padv.builtin.task.RunModelS
tandards

includeDesignErrorDetection
Task

Detect Design Errors padv.builtin.task.DetectDes
ignErrors

includeModelComparisonTask Generate Model Comparison padv.builtin.task.GenerateM
odelComparison

includeSDDTask Generate SDD Report padv.builtin.task.GenerateS
DDReport

includeSimulinkWebViewTask Generate Simulink Web View padv.builtin.task.GenerateS
imulinkWebView

includeTestsPerTestCaseTask Run Tests padv.builtin.task.RunTestsP
erTestCase

includeMergeTestResultsTask Merge Test Results padv.builtin.task.MergeTest
Results

includeGenerateCodeTask Generate Code padv.builtin.task.GenerateC
ode

includeAnalyzeModelCode Check Coding Standards padv.builtin.task.AnalyzeMo
delCode

includeProveCodeQuality Prove Code Quality padv.builtin.task.AnalyzeMo
delCode

includeCodeInspection Inspect Code padv.builtin.task.RunCodeIn
spection

In addition to the built-in tasks, you can also add custom tasks to your process model. For information
on how to create and add custom tasks, see “Create Custom Tasks” on page 4-32. After you add a
custom task to the process model, you can specify dependencies or a preferred task execution order.
For more information, see “Section C — Specify Dependencies Between Tasks” on page 4-6 and
“Section D — Specify Preferred Task Execution Order” on page 4-7.

Section B — Change Behavior of Built-In Tasks
In the default process model, you can change the values of built-in task properties to change how the
tasks perform their actions. The built-in task padv.builtin.task.RunModelStandards has a
property ReportPath that specifies where the task saves the output Model Advisor report. The

 Modify Default Process Model to Fit Your Process

4-5

default process model specifies that, for this process, the task should save the Model Advisor report
in a subfolder named model_standards_results.

%%%
%% Register Tasks
%%%

%% Checking model standards on a model
if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');
end

...

You can change the values for these task properties to change the task behavior. For example,
suppose you want the task to use a specific Model Advisor configuration file, sampleChecks.json.
You can update the process model to find that file and add the file as an input to the task.

%%%
%% Register Tasks
%%%

%% Checking model standards on a model
if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=fullfile('tools','sampleChecks.json')));
end

...

For more information, see “Change Task Behavior” on page 4-17.

Section C — Specify Dependencies Between Tasks
In a process model, you can specify the relationship between tasks as either a dependsOn
relationship or a runsAfter relationship.

The default process model uses the dependsOn function to specify several tasks which depend on
other tasks in order to run successfully. For the default process model, the code inspection and code
analysis tasks depend on the code generation task and the task for merging test results depends on
the task that runs the tests.

%% Set Task Dependencies
if includeGenerateCodeTask && includeCodeInspection
 slciTask.dependsOn(codegenTask);
end
if includeGenerateCodeTask && includeAnalyzeModelCode
 psTask.dependsOn(codegenTask);
end
if includeTestsPerTestCaseTask && includeMergeTestResultsTask
 mergeTestTask.dependsOn(milTask,"WhenStatus",{'Pass','Fail'});
end

4 Customize Your Process Model

4-6

For example, you need to generate code before you can use Polyspace to analyze the code. So the
default process model specifies that the Polyspace task (psTask) depends on the code generation
task (codegenTask).

If you open Process Advisor and point to the Polyspace task, Process Advisor highlights the
dependency between the tasks. If you try to run the Polyspace task, the build system automatically
runs the code generation task first.

For more information on task dependencies, see “Specify Dependencies Between Tasks” on page 4-
28.

Section D — Specify Preferred Task Execution Order
In a process model, you can specify the relationship between tasks as either a dependsOn
relationship or a runsAfter relationship. The default process model uses the runsAfter function to
specify a preferred execution order for specific tasks that do not depend on each other, but should
run in a specific order.

%% Set Task Run-Order
if includeModelStandardsTask && includeSimulinkWebViewTask
 maTask.runsAfter(slwebTask);
end

 Modify Default Process Model to Fit Your Process

4-7

if includeDesignErrorDetectionTask && includeModelStandardsTask
 dedTask.runsAfter(maTask);
end
if includeSDDTask && includeModelStandardsTask
 sddTask.runsAfter(maTask);

...

These tasks do not need to run in this order to run successfully, but the runsAfter function specifies
that, if possible, the build system should try to run the tasks in this order.

For example, the default process model specifies that, if possible, the modeling standards task
(maTask) should run after the Simulink web view task (slwebTask). The modeling standards task
does not depend on information from the Simulink web view task in order to run, but that is the
preferred execution order for the tasks in this particular process.

For more information on task ordering, see “Specify Preferred Task Order” on page 4-29.

4 Customize Your Process Model

4-8

Overview of Process Model Customizations
You can define a repeatable development and verification process for your team by using the support
package CI/CD Automation for Simulink Check. You define your process inside a process model. A
process model is a MATLAB file that specifies the tasks that you want to perform and dependencies
between those tasks. The support package has built-in tasks for common activities like running Model
Advisor checks, generating code, and running tests. But you can also create your own custom tasks.
You can use built-in and custom queries to find artifacts for your tasks to iterate over or use as inputs.

Before you create a process model, make sure your files are inside a project. For information on how
to create a project, see “Create Projects”.

Create Process Model
If you do not have a process model for your project, you can create oneby using either the:

• Process Advisor app — If your project does not have a process model, Process Advisor
automatically copies the default process model into your project.

• createprocess function — You can use this function to access different process model
templates, including templates for default and parallel processes.

A process model file accepts one argument, a padv.ProcessModel object.

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

end

The process model file for your project must:

• Be on the MATLAB path
• Have the file name processmodel.m or processmodel.p

For information on how to get started by using the default process model, see “Modify Default
Process Model to Fit Your Process” on page 4-2.

Add Tasks to Process
In the process model, you add the tasks that you want to perform as part of your process. A task
represents an individual step in your process. Tasks can accept your artifacts as inputs, perform
actions, generate assessments, and return artifacts as outputs.

You can add:

 Overview of Process Model Customizations

4-9

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

• “Built-In Tasks” on page 4-13 for common activities like checking modeling standards with Model
Advisor, generating code, and running tests

• “Custom Tasks” on page 4-14 for your own customized task behavior

You add tasks to your process by using the addTask method on the padv.ProcessModel object. For
example, the following process model adds the built-in task
padv.builtin.task.RunModelStandards to the default process.

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 % Adding a built-in task
 modelAdvisorTask = pm.addTask(padv.builtin.task.RunModelStandards);

end

In Process Advisor, the Tasks column shows the task and the artifacts that the task runs on.

Specify Task Relationships
In your process model, you can specify a relationship between tasks. The relationship can either be a
dependsOn relationship or a runsAfter relationship. Use the:

• dependsOn method when a task depends on another task to run successfully
• runsAfter method when a task should run after another task when possible

For example, suppose that you want to check modeling standards, generate code, and then inspect
the generated code, in that order. The code generation task should run after the check modeling
standards task, but does not directly depend on that task or its outputs. The code inspection task
depends on the generated code from the code generation task and cannot run successfully without it.

The following process model adds those built-in tasks to the process model and specifies the
relationships between those tasks.

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

4 Customize Your Process Model

4-10

 % Adding built-in tasks
 modelAdvisorTask = pm.addTask(padv.builtin.task.RunModelStandards);
 generateCodeTask = pm.addTask(padv.builtin.task.GenerateCode);
 inspectCodeTask = pm.addTask(padv.builtin.task.RunCodeInspection);

 % Specify task relationships
 generateCodeTask.runsAfter(modelAdvisorTask);
 inspectCodeTask.dependsOn(generateCodeTask);

end

In Process Advisor, if you point to the run button for a task that depends on another task, Process
Advisor highlights that dependency.

For more information, see “Define Task Relationships” on page 4-27.

Find Specific Artifacts Using Queries
A query can automatically find artifacts based on the artifact type, project label, file path, and other
characteristics. You can use queries in your process model to automatically find input artifacts for
your tasks and to specify how often a task runs, without needing to manually update a static list of
files.

You can use:

 Overview of Process Model Customizations

4-11

• “Built-In Queries” on page 4-14 to find artifacts like models, test cases, and requirements
• “Custom Queries” on page 4-16 to find artifacts that are not covered by the built-in queries

You can use queries to specify task properties like:

• IterationQuery — Determines how often a task runs by finding the artifacts that the task
iterates over

• InputQueries — Finds inputs for the task
• InputDependencyQuery — Finds additional dependencies related to the inputs

For each task in your process, the build system runs the task IterationQuery to determine which
artifacts to run the task for. The build system then creates a task iteration, runs additional queries the
task needs, runs the task, and saves the task results.

For each task iteration, the build system runs the InputQueries to find the inputs for that specific
task iteration. For each input, the build system runs the InputDependencyQuery to find additional
dependencies that can impact if task results are up-to-date.

In Process Advisor, the Tasks column shows the task iterations and when you point to the task results
in the I/O column, you can see the Inputs and Dependencies.

For example, the following process model has a task named TaskA that runs once for each data
dictionary in the project and a task named TaskB that uses the requirements files in the project as
inputs.

function processmodel(pm)

4 Customize Your Process Model

4-12

 arguments
 pm padv.ProcessModel
 end

 % Task A
 pm.addTask("TaskA",...
 IterationQuery = padv.builtin.query.FindArtifacts(IncludePathRegex = "DD_.*\.sldd"));

 % Task B
 pm.addTask("TaskB",InputQueries = padv.builtin.query.FindRequirements);

end

Built-In Tasks
The support package has built-in tasks for common activities like running Model Advisor checks,
generating code, and running tests. These tasks have a default behavior, but you can reconfigure the
task behavior from inside the process model to change which configuration files the task uses, what
the output report file type is, and other behaviors. For information on how to change task behavior,
see “Reconfigure Built-In Tasks” on page 4-17.

The built-in tasks include tasks for generating model reports, performing model analysis, running
tests, generating code, collecting metrics, and analyzing code.

Goal Task Title Built-In Task Required Product Requires Display
Model Reports Generate SDD

Report
padv.builtin.t
ask.GenerateSD
DReport

Simulink Report
Generator

Yes. For more
information, see
“Set Up Virtual
Display Machines
Without Displays”
on page 5-26.

Generate
Simulink Web
View

padv.builtin.t
ask.GenerateSi
mulinkWebView

Generate Model
Comparison

padv.builtin.t
ask.GenerateMo
delComparison

Simulink

Model Analysis Check Modeling
Standards

padv.builtin.t
ask.RunModelSt
andards

Simulink Check No

Detect Design
Errors

padv.builtin.t
ask.DetectDesi
gnErrors

Simulink Design
Verifier

Testing and
Coverage

Merge Test
Results

padv.builtin.t
ask.MergeTestR
esults

Simulink Test

Run Tests padv.builtin.t
ask.RunTestsPe
rModel

Run Tests padv.builtin.t
ask.RunTestsPe
rTestCase

 Overview of Process Model Customizations

4-13

Goal Task Title Built-In Task Required Product Requires Display
Model Design and
Testing Metrics

Collect Metrics padv.builtin.t
ask.CollectMet
rics

Simulink Check

Code Generation Generate Code padv.builtin.t
ask.GenerateCo
de

Embedded Coder

Code Analysis Check Coding
Standards or
Prove Code
Quality

padv.builtin.t
ask.AnalyzeMod
elCode

Polyspace Bug
Finder or
Polyspace Code
Prover

Inspect Code padv.builtin.t
ask.RunCodeIns
pection

Simulink Code
Inspector

Custom Tasks
If you need to perform steps that are not already covered by built-in tasks, you can add custom tasks
to your process model. Depending on what you want your custom task to do, there are different
approaches.

To execute an existing MATLAB script, you can add a new task that runs that script by specifying the
Action argument of the addTask method. For example, to run an existing script named
"myScript.m":

function processmodel(pm)

 arguments
 pm padv.ProcessModel
 end

 pm.addTask("MyCustomTask", Action = @runMyScript);

end

function taskResult = runMyScript(~)
 run("myScript.m");
 taskResult = padv.TaskResult;
end

For more complex tasks, you can inherit from a built-in task or the superclass padv.Task and then
override class properties and methods to fit your needs. For more information, see “Create Custom
Tasks” on page 4-32.

Built-In Queries
The support package has built-in queries that can find specific sets of artifacts in your project. You
can use the queries when you define your process, but note that you can only use certain queries as
an input query (InputQueries) or iteration query (IterationQuery) for a task.

4 Customize Your Process Model

4-14

Query Returns Iteration Query Input Query
padv.builtin.query
.FindArtifacts

Artifacts that meet
specified criteria

✔ ✔*

padv.builtin.query
.FindCodeForModel

Generated code files
and buildInfo.mat
for a model

✔ ✔

padv.builtin.query
.FindDesignModels

Units and components
in project

✔

padv.builtin.query
.FindExternalCodeC
ache

External code cache
files in project

 ✔

padv.builtin.query
.FindFileWithAddre
ss

File at the specified
address

✔ ✔

padv.builtin.query
.FindFilesWithLabe
l

Files with specific
project label

✔

padv.builtin.query
.FindMAJustificati
onFileForModel

Find Model Advisor
justification files

✔ ✔

padv.builtin.query
.FindModels

Models ✔ ✔*

padv.builtin.query
.FindModelsWithLab
el

Models with specific
project label

✔

padv.builtin.query
.FindModelsWithTes
tCases

Models associated with
a test case

✔

padv.builtin.query
.FindProjectFile

Project file ✔ ✔

padv.builtin.query
.FindRefModels

Referenced models ✔

padv.builtin.query
.FindRequirements

Requirement sets ✔ ✔*

padv.builtin.query
.FindRequirementsF
orModel

Requirements
associated with model

✔ ✔

padv.builtin.query
.FindTestCasesForM
odel

Test cases associated
with model

✔ ✔

padv.builtin.query
.FindTopModels

Top models ✔ ✔

padv.builtin.query
.FindUnits

Units in the project ✔ ✔

 Overview of Process Model Customizations

4-15

Query Returns Iteration Query Input Query
padv.builtin.query
.GetDependentArtif
acts

Dependent artifacts for
artifact

 ✔

padv.builtin.query
.GetIterationArtif
act

Artifact that the task is
iterating over

 ✔

padv.builtin.query
.GetOutputsOfDepen
dentTask

Outputs from immediate
predecessor task

 ✔

*You cannot use the query as an input query if you specify the query input argument InProject as
true.

Custom Queries
If you need to find artifacts that are not already covered by built-in queries, you can use custom
queries in your process model. Depending on what you want your custom query to do, there are
different approaches. For more information, see “Find Artifacts by Creating Custom Queries” on page
4-42.

Use Your Process
When you are ready to run your process, you do not manually run the process model file. Instead, you
use the Process Advisor app or the runprocess function. The Process Advisor build system
automatically loads your process model, analyzes your project, and creates your pipeline of tasks. For
more information, see “Automate and Run Tasks with Process Advisor” on page 3-2 and
“Programmatically Run Tasks” on page 3-13.

4 Customize Your Process Model

4-16

Reconfigure Built-In Tasks

Change Task Behavior
You can change the behavior of a built-in task by overriding the values of built-in task properties in
the process model.

For example, the built-in task padv.builtin.task.RunModelStandards has several properties,
like CheckIDList, DisplayResults, and ExtensiveAnalysis.

padv.builtin.task.RunModelStandards

 ans =

 RunModelStandards with properties:

 CheckIDList: <missing>
 DisplayResults: "Summary"
 ExtensiveAnalysis: "on"
 Force: "on"
 ParallelMode: "off"
 ReportFormat: "html"
 ...

The task uses these properties to specify input arguments for the function ModelAdvisor.run. The
property CheckIDList allows you to specify a list of Model Advisor checks that you want the task to
run.

By default, the padv.builtin.task.RunModelStandards task runs a subset of high-integrity
systems checks. But if you specify a new value for the CheckIDList property in the process model,
the task will run those Model Advisor checks instead:

%% Checking model standards on a model
if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which Model Advisor checks to run
 maTask.CheckIDList = {'mathworks.jmaab.db_0032',...
 'mathworks.jmaab.jc_0281'};

end

Note This example code shows how to specify a list of Model Advisor checks for the task to run. If
you want to use a Model Advisor configuration file instead, you need to provide the configuration file
as an input to the task. For information, see “Add Inputs to Tasks” on page 4-20.

For information on how to reconfigure the Check Modeling Standards task to use Model Advisor
justification files, see padv.builtin.task.RunModelStandards.

You can also open the source code for the built-in task. For example:

open padv.builtin.task.RunModelStandards

 Reconfigure Built-In Tasks

4-17

Change How Often Tasks Run
Most built-in tasks run once for each model in the project. For example, in the Process Advisor
example project (processAdvisorExampleStart), the task Check Modeling Standards runs
once for each of these models in the project and the model names appear below the task title in
Process Advisor.

However, you can change the IterationQuery for a task to specify a different set of artifacts for the
task. You must specify the value of IterationQuery as either a padv.Query object or the name of a
padv.Query. For each task in the process, the build system runs the iteration query to determine
which artifacts to run the task for. By default, the built-in tasks consider the artifacts returned by the
iteration query as inputs to the task. Therefore the built-in tasks are able to run on each of the
artifacts returned by the iteration query. The support package contains several built-in queries that
you can use.

The most commonly used built-in queries are:

• padv.builtin.query.FindModels — Find models in the project
• padv.builtin.query.FindTestCasesForModel — Find test cases associated with a specific

model in the project
• padv.builtin.query.FindArtifacts — Finds artifacts in the project that meet the criteria
specified in the input arguments

Additionally, some built-in queries have optional arguments that you can use to filter certain artifacts
out of the query results.

You can also access help for the built-in queries from the MATLAB Command Window. For example,
this code returns help information for the built-in query padv.builtin.query.FindArtifacts:

help padv.builtin.query.FindArtifacts

Only Run for Specific Models

By default, the Check Modeling Standards task uses the built-in query
padv.builtin.query.FindModels as the IterationQuery.

But suppose that you only want to run the Check Modeling Standards task for models that have
Control in their file path. In the process model, you can change the IterationQuery for the task
to:

1 Use the built-in query padv.builtin.query.FindModels to find the models in the project
2 Specify the IncludePath argument of the query to filter out models that do not have Control

in the file path

4 Customize Your Process Model

4-18

%% Checking model standards on a model
if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which set of artifacts to run for
 maTask.IterationQuery = ...
 padv.builtin.query.FindModels(IncludePath = 'Control')

end

In Process Advisor, the model AHRS_Voter.slx no longer appears under the task because
AHRS_Voter.slx does not include Control in the path.

Only Run for Specific Test Cases

By default, the Run Tests task in the default process model uses the built-in query
padv.builtin.query.FindTestCasesForModel as the IterationQuery. This means that the
task runs once for each test case associated with models in the project.

But suppose that you only want to run the task for tests that use a specific project label. In the
process model, you can change the IterationQuery for the task to:

1 Use the built-in query padv.builtin.query.FindTestCasesForModel to find the models in
the project

2 Specify the IncludeLabel argument of the query to only include test cases that use a specific
project label. In this example, the project label is ModelTest and the project label category is
TestType.

%% Running tests on test case to test case basis
if includeTestsPerTestCaseTask
 milTask = pm.addTask(padv.builtin.task.RunTestsPerTestCase());
 % Configure the tests per testcase task
 milTask.OutputDirectory = fullfile(...
 '$PROJECTROOT$','PA_Results','test_results');

 % Specify which set of artifacts to run for
 milTask.IterationQuery = ...
 padv.builtin.query.FindTestCasesForModel(...
 IncludeLabel = {'TestType','ModelTest'});

end

If you need to perform a query that is not already covered by a built-in query, see “Find Artifacts by
Creating Custom Queries” on page 4-42.

 Reconfigure Built-In Tasks

4-19

Only Run for Artifacts Added to Project

By default, a query can find files even if you did not explicitly add the files to your project. For
example, suppose that you have a model that is under your project root folder, but that you did not
add to your project.

The model appears in the Tasks column in Process Advisor because the built-in queries analyze all
artifacts under the project root folder.

If you only want to run a task for models that you added to the project, you can specify the
InProject argument for the iteration query as true. For example, for the Check Modeling
Standards task, you can update the process model to specify:

maTask = pm.addTask(padv.builtin.task.RunModelStandards());
maTask.IterationQuery = padv.builtin.query.FindModels(...
 InProject = true);

Add Inputs to Tasks
By default, the built-in tasks automatically consider the artifacts returned by the IterationQuery
as input artifacts to the task. But if you want to provide additional inputs to a task, you can add inputs
to a task by using the addInputQueries function. The addInputQueries function adds input
queries to the InputQueries property of the task. When you run a task, the build system runs the

4 Customize Your Process Model

4-20

input queries of the task to find the input artifacts that the task can run on. For each input, the build
system also runs the InputDependencyQuery to find additional input dependencies that can impact
if task results are up-to-date.

Use File as Input to Task

For example, by default, the Check Modeling Standards task runs a subset of high-integrity checks.
But suppose that you want the task to run the Model Advisor checks specified by the Model Advisor
configuration file sampleChecks.json instead. You do not need to change property values, but you
do need to add that file as an input to the task. When you provide the file as an input to the task, the
task can use the file, recognize changes to the file, and update the task status as needed.

In the process model, you can use the addInputQueries function to specify an input query that
finds the Model Advisor configuration file. You can use the built-in query
padv.builtin.query.FindFileWithAddress as an input query to find the Model Advisor
configuration file:

• The first argument, 'ma_config_file', specifies that the file is a Model Advisor configuration
file.

• The second argument specifies the path to the Model Advisor configuration file.

%% Checking model standards on a model
if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which Model Advisor configuration file to run
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type = 'ma_config_file',...
 Path = fullfile('tools','sampleChecks.json')));

end

For information on how to reconfigure the Check Modeling Standards task to use a Model Advisor
configuration file or Model Advisor justification files, see
padv.builtin.task.RunModelStandards.

Note If you provide both a list of check IDs (CheckIDList) and a Model Advisor configuration file
for the task, the task runs Model Advisor using the Model Advisor configuration file and ignores the
list of check IDs.

Use Task Outputs as Task Inputs

Suppose that you want to pass the output of one task as the input to another task. You can use the
built-in query padv.builtin.query.GetOutputsOfDependentTask to find the outputs of the
predecessor task and specify that query as an input query for the task.

For example, the default process model specifies that the Merge Test Results task depends on the
Run Tests task:

if includeTestsPerTestCaseTask && includeMergeTestResultsTask
 mergeTestTask.dependsOn(milTask, "WhenStatus",{'Pass','Fail'});
end

 Reconfigure Built-In Tasks

4-21

If you open the source code for the Merge Test Results task, you can see that the task uses the
built-in query padv.builtin.query.GetOutputsOfDependentTask as an input query.

open padv.builtin.task.MergeTestResults

...
options.InputQueries = [padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.GetOutputsOfDependentTask(...
 Task="padv.builtin.task.RunTestsPerTestCase")];
options.InputDependencyQuery = padv.builtin.query.GetDependentArtifacts;
...

When you run the Merge Test Results task, the build system runs this input query, which passes the
current model and the outputs of the Run Tests task as inputs to the Merge Test Results task.

For each input, the build system checks for other artifacts that the inputs depend on by running the
InputDependencyQuery. For the Merge Test Results task, the input dependency query allows the
build system to find related artifacts, such as data dictionaries, that the model uses. Those
dependencies can impact if the task results are up-to-date or outdated.

Missing Dependencies

If the I/O column for a task is missing a dependency for your task, you can add that artifact by
changing the InputDependencyQuery for the task. For example, in your process model:

addTask(pm,"MyCustomTask",...
 InputDependencyQuery = padv.builtin.query.FindArtifacts(...
 IncludePath="myDependency.m"));

In this example, a change to the file myDependency.m makes the results for the task MyCustomTask
outdated.

Create Multiple Instances of Tasks
You can add multiple instances of a task to your process model to run different task configurations.
For example, you can have one instance of the built-in task
padv.builtin.task.RunTestsPerModel that runs normal mode tests and another instance that
runs software-in-the-loop (SIL) tests.

When you create multiple instances of a task, there are a few considerations:

• Make sure that you assign each task instance a unique name, for example:

milTask = pm.addTask(padv.builtin.task.RunTestsPerModel(...
 Name = "RunTestsNormalMode"));
silTask = pm.addTask(padv.builtin.task.RunTestsPerModel(...
 Name = "RunTestsSILMode"));

The build system uses the Name property as the unique identifier for the task.
• You can reconfigure the task instances to perform different functionalities. For example, starting

in R2023a, you can run tests in different simulation modes without having to change the test
definition:

 milTask.SimulationMode = "Normal";
 silTask.SimulationMode = "Software-in-the-Loop";

4 Customize Your Process Model

4-22

• You might need to reconfigure the task instances to avoid overwriting task outputs, for example:

 % Specify normal mode outputs
 milTask.OutputDirectory = defaultTestResultPath;
 milTask.ReportName = '$ITERATIONARTIFACT$_Normal_Test';
 milTask.ResultFileName = '$ITERATIONARTIFACT$_Normal_ResultFile';

 % Specify SIL mode outputs
 silTask.OutputDirectory = defaultTestResultPath;
 silTask.ReportName = '$ITERATIONARTIFACT$_SIL_Test';
 silTask.ResultFileName = '$ITERATIONARTIFACT$_SIL_ResultFile';

• You might need to reconfigure the input queries and iteration queries for tasks. For example, if
you have multiple instances of padv.builtin.task.RunTestsPerModel and you want to
merge the test results from both instances, you need to update the InputQueries for the task to
get the outputs from both task instances:

 %% Merge Test Results (Normal and SIL)
 mergeTestTask = pm.addTask(padv.builtin.task.MergeTestResults(...
 InputQueries = [...
 padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.GetOutputsOfDependentTask(...
 Task = "RunTestsNormalMode"),...
 padv.builtin.query.GetOutputsOfDependentTask(...
 Task = "RunTestsSILMode")]));

Run Tests in Normal and SIL Mode

Suppose that you want to have one instance of the built-in task
padv.builtin.task.RunTestsPerModel that runs normal mode tests and another instance that
runs software-in-the-loop (SIL) tests.

Starting in R2023a, in your process model, you can specify:

%% Run Tests in Normal Mode
 % Add task that runs tests in normal mode
 milTask = pm.addTask(padv.builtin.task.RunTestsPerModel(...
 Name = "RunTestsNormalMode",...
 Title = "Run Tests in Normal Mode"));
 milTask.SimulationMode = "Normal";
 % Specify normal mode outputs
 milTask.OutputDirectory = defaultTestResultPath;
 milTask.ReportName = '$ITERATIONARTIFACT$_Normal_Test';
 milTask.ResultFileName = '$ITERATIONARTIFACT$_Normal_ResultFile';

 %% Run Tests in SIL Mode
 % Add task that runs tests in SIL mode
 silTask = pm.addTask(padv.builtin.task.RunTestsPerModel(...
 Name = "RunTestsSILMode",...
 Title = "Run Tests in SIL Mode"));
 silTask.SimulationMode = "Software-in-the-Loop";
 % Specify SIL mode outputs
 silTask.OutputDirectory = defaultTestResultPath;
 silTask.ReportName = '$ITERATIONARTIFACT$_SIL_Test';
 silTask.ResultFileName = '$ITERATIONARTIFACT$_SIL_ResultFile';

 %% Merge Test Results (Normal and SIL)
 mergeTestTask = pm.addTask(padv.builtin.task.MergeTestResults(...

 Reconfigure Built-In Tasks

4-23

 InputQueries = [...
 padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.GetOutputsOfDependentTask(...
 Task = "RunTestsNormalMode"),...
 padv.builtin.query.GetOutputsOfDependentTask(...
 Task = "RunTestsSILMode")]));
 % Specify Merged Test Outputs
 % mergeTestTask.ReportPath = defaultTestResultPath;

 %%
 %% Set Task relationships
 %%

 %% Set Task Dependencies
 mergeTestTask.dependsOn(milTask,"WhenStatus",{'Pass','Fail'});
 mergeTestTask.dependsOn(silTask,"WhenStatus",{'Pass','Fail'});

Turn Off Change Tracking for Input Artifacts
If you do not want the build system to mark a task as outdated when you make changes to a specific
input artifact, you can turn off change tracking for that artifact by specifying the name-value
argument TrackArtifacts as false when you use the built-in query
padv.builtin.query.FindFileWithAddress to find the artifact. For example, the following
process model code turns off change tracking for a Model Advisor configuration file,
myMAConfig.json, used as an input for the Check Modeling Standards task:

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.addInputQueries(...
 padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=which('myMAConfig.json'), ...
 TrackArtifacts=false));

When you run the task, the Process Advisor I/O column shows the outputs as Untracked. If you make
a change to an untracked file, the build system does not mark the task as outdated.

4 Customize Your Process Model

4-24

By default, the build system marks files outside the project as Untracked because you cannot track
changes to files outside the project. The change tracking setting for the artifact is stored in the
Track property in the ArtifactAddress property for the padv.Artifact object.

Note If you specify TrackArtifacts=false, you can no longer use that query object as an
iteration query. The build system needs to track changes iteration artifacts to identify the iterations
for the task.

Turn Off Change Tracking for Task Outputs
If you do not want the build system to mark a task as outdated when you make changes to task
outputs, you can turn off change tracking for those task outputs. In your process model, specify the
task property TrackOutputs as false. For example:

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.TrackOutputs = false;

When you run the task, the Process Advisor I/O column shows the outputs as Untracked. If you make
a change to an untracked file, the build system does not mark the task as outdated.

 Reconfigure Built-In Tasks

4-25

Handling Untracked Dependencies
If you make a change to an untracked input or output file, Process Advisor and the build system do
not mark the task as outdated. Make sure that task inputs or outputs that appear as Untracked do
not need to be tracked to maintain the task status and result information that you need for your
project.

By default, the build system generates a warning for untracked I/O files. To change build system
behavior when there are untracked I/O files, you can specify the project setting Untracked
dependency behavior as either:

• "Allow" — Do not generate warnings or errors for untracked I/O files.
• "Warn" — Generate a warning if a task has untracked I/O files. In Process Advisor, the I/O column

shows a warning icon .
• "Error" — Generate an error if a task has untracked I/O files.

For more information, see “Specify Settings for Process Advisor and Build System” on page 3-16.

4 Customize Your Process Model

4-26

Define Task Relationships

Task Relationships
When you author your process model, you might want to specify dependencies between tasks or
specify a preferred task execution order. You can do this by specifying the type of relationship
between the tasks.

You can specify the relationship between two tasks as either a:

• dependsOn relationship — Specifies a dependency between tasks. For example, if you specify:

TaskB.dependsOn(TaskA)

The build system will only run TaskB after TaskA completes with a task status.

For example, the Check Coding Standards task depends on the Generate Code task. Without
the generated code, the Check Coding Standards task cannot run successfully. To specify that
the generated code output by Generate Code task is the input for the Check Coding Standards
task, the Check Coding Standards task uses the built-in query
padv.builtin.query.GetOutputsOfDependentTask to find the outputs from the Generate
Code task:

options.InputQueries = padv.builtin.query.GetOutputsOfDependentTask(...
 Task="padv.builtin.task.GenerateCode");

• runsAfter relationship — Specifies a preferred task execution order. For example, if you
specify:

TaskB.runsAfter(TaskA)

The build system can run TaskB without running TaskA first. But if both TaskA and TaskB are in
the queue to be run, the build system will run TaskB after TaskA if possible.

For example, the default process model specifies that the Check Modeling Standards task
should run after the Generate Simulink Web View task. The Check Modeling Standards task
can run successfully without the Generate Simulink Web View task. But the default process
model specifies that, if possible, the build system should generate the web view before checking
modeling standards.

 Define Task Relationships

4-27

Note You can specify the relationship between two tasks as either a dependsOn relationship or a
runsAfter relationship, but not both.

If you define multiple relationships between the same tasks, the build system only uses the most
recent relationship and ignores previous relationships. For example:

runsAfter(taskA, taskB)
runsAfter(taskB, taskA) % build system only uses this relationship

For information on the dependsOn relationship, see “Specify Dependencies Between Tasks” on page
4-28. For information on the runsAfter relationship, see “Specify Preferred Task Order” on page 4-
29.

Specify Dependencies Between Tasks
If other tasks in the process must run before a certain task, you can use the dependsOn function in
your process model to specify that dependency. For example, if you specify:

TaskB.dependsOn(TaskA)

The build system will only run TaskB after TaskA completes with a task status. If a task does not
depend on another task, but you want to specify a preferred task execution order, use a runsAfter
relationship instead.

For example, to specify that a custom task, MyCustomTask, depends on the task Check Modeling
Standards, use the dependsOn function on the task objects in your processmodel.m file:

% dependsOn(task,dependency)
dependsOn(taskObject,maTask);

If you open Process Advisor and point to a task that depends on another task, Process Advisor
highlights the dependency.

4 Customize Your Process Model

4-28

If you try to run MyCustomTask, the build system will automatically run Check Modeling
Standards first. By default, MyCustomTask will not run until Check Modeling Standards runs
completely and returns a task status.

Note If you want to force a task to run independently, without dependent tasks running first, you can
use the Isolation argument of runprocess:

runprocess(Tasks = taskName, Isolation = true)

Specify Preferred Task Order
If a task does not depend on another task, but you want to specify a preferred task execution order,
you can use the runsAfter function in your process model. For example, if you specify:

TaskB.runsAfter(TaskA)

The build system can run TaskB without running TaskA first. But if both TaskA and TaskB are in the
queue to be run, the build system will run TaskB after TaskA if possible. If your task should not run
without another task running first, use a dependsOn relationship instead.

For example, to specify that a custom task, MyCustomTask (taskObject), should run after the
Generate Simulink Web view task (slwebTask), you would add this code to the processmodel.m
file:

% runsAfter(task,predecessors)
runsAfter(taskObject,slwebTask);

 Define Task Relationships

4-29

If a task must always run before another task, use dependsOn instead to make sure that both tasks
always run together in sequence.

Note If you define multiple relationships between the same tasks, the build system only uses the
most recent relationship and ignores previous relationships. For example, suppose you have a process
model that contains:

runsAfter(taskA, taskB)
runsAfter(taskB, taskA) % build system only uses this relationship

This code defines a circular relationship between taskA and taskB because the code specifies both
that taskA should run after taskB and that taskB should run after taskA.

By default, the build system ignores the first runsAfter command and only uses the second
runAfter command.

If you want circular relationships to generate an error, specify the name-value argument
StrictOrdering as true.

For example:

runsAfter(taskObject,slwebTask,...
 StrictOrdering = true); % error if circular relationship

Note By default, the build system only runs the predecessor tasks on artifacts that the task and the
predecessor tasks have in common. If you need all task iterations of the predecessor tasks to run,
specify IterationArtifactMatching as false.

For example:

4 Customize Your Process Model

4-30

% run predecessor task on all its artifacts
runsAfter(taskObject,slwebTask,...
 IterationArtifactMatching = false);

 Define Task Relationships

4-31

Create Custom Tasks
The support package contains several built-in tasks that you can reconfigure and use to perform steps
in your process. But if you need to perform steps that are not already covered by built-in tasks, you
can add custom tasks to your process model.

Depending on what you want your custom task to do, there are different approaches:

• For basic MATLAB script execution — Use the addTask function to create a new task and use the
Action argument to specify a function handle for a function that runs the script. See “Custom
Task that Runs Existing Script” on page 4-32.

• For more complex tasks — Create a MATLAB class that inherits from either a built-in task or the
superclass padv.Task and then override class properties and methods to fit your needs. See
“Custom Task for Specialized Functionality” on page 4-32.

Custom Task that Runs Existing Script
If your custom task only needs to run an existing MATLAB script, you can specify which script to run
by using the Action argument for the addTask function.

For example, suppose that you have a script, myScript.m, that you want a custom task to run. You
can use the addTask function to add a new task to your process model. The Action argument
specifies the function that the task runs. For example, inside your processmodel.m file, you can
specify:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"RunMyScript", Action = @runMyScript);

end

function taskResult = runMyScript(~)
 run("myScript.m");
 taskResult = padv.TaskResult;
end

"RunMyScript" is the name for the new task. @runMyScript is the function handle for the function
that you define inside the processmodel.m file.

To define more complex custom tasks, use a MATLAB class instead. See "Create Task for Specialized
Functionality".

Custom Task for Specialized Functionality
If your custom task only needs to run an existing MATLAB script, you can use the information in
"Custom Task that Runs Existing Script". Otherwise, you should create and use a MATLAB class to
define your custom task.

To create a task that performs a custom functionality:

4 Customize Your Process Model

4-32

1 Create a new MATLAB class.
2 Inherit from either a built-in task or the superclass padv.Task.
3 Specify the task name and, optionally, other task properties.
4 Keep or override the run method that defines the action that the task performs.
5 Add the task to your process model.

Create New MATLAB Class

Create a new MATLAB class in your project.

Tip Namespaces can help you organize the class definition files for your custom tasks. In the root of
your project, create a folder +processLibrary with a subfolder +task and save your class in that
folder.

To share your custom tasks across multiple process models in different projects, consider creating a
referenced project that contains your folders and class definition files. Your main projects can then
use the referenced project as a shared process library.

Choose Superclass for Custom Task

Your MATLAB class can inherit from either:

• A built-in task — Use this approach when there is a built-in task that is similar to the custom task
that you want to create. When you inherit from a built-in task, like
padv.builtin.task.RunModelStandards, your custom task inherits the functionality of that
task, but then you can override the properties and methods of the class to fit your needs.

• The superclass padv.Task — Use this approach if your custom task needs to perform a step that
is not similar to a built-in task. padv.Task is the base class of the built-in tasks, so you must
completely define the inputs, functionality, and outputs of the task.

a If you are inheriting from a built-in task, you can replace the contents of your class file with this
example code:

classdef MyCustomTask < padv.builtin.task.RunModelStandards
 % task definition goes here
 methods
 function obj = MyCustomTask(options)
 arguments
 options.Name = "MyCustomTask";
 options.Title = "My Custom Task";
 end
 obj@padv.builtin.task.RunModelStandards(Name = options.Name);
 obj.Title = options.Title;
 end
 end
end

 Create Custom Tasks

4-33

This code uses the built-in task padv.builtin.task.RunModelStandards, but you can
change those lines of code to use another built-in task.

b If you are inheriting from padv.Task, you can replace the contents of your class file with this
example code:

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 % unique identifier for task
 options.Name = "MyCustomTask";
 % artifacts the task iterates over
 options.IterationQuery = "padv.builtin.query.FindModels";
 % input artifacts for the task
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % where the task outputs artifacts
 options.OutputDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$','my_custom_task_results');
 end

 % Calling constructor of superclass padv.Task
 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries);
 obj.OutputDirectory = options.OutputDirectory;
 end

 function taskResult = run(obj,input)
 % "input" is a cell array of input artifacts
 % length(input) = number of input queries

 % class definition goes here

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;
 end
 end
end

This example code finds the models in the project by using the iteration query
padv.builtin.query.FindModels and specifies those models as task inputs by using the
input query padv.builtin.query.GetIterationArtifact.

The code calls the constructor of the superclass padv.Task. For information on superclass
constructors, see “Design Subclass Constructors”.

Specify Task Properties

Specify the Name property and, optionally, other task properties.

When you inherit from padv.Task, you must specify a Name (unique task identifier). Other class
arguments are optional, but can help define the inputs and other properties of the task. Common
class arguments that you might want to specify include:

4 Customize Your Process Model

4-34

Argument Description
Name Unique identifier for task
IterationQuery (optional) Which artifacts the task iterates over. For example, to have the

task run one time for each model in the project, specify
IterationQuery as the built-in query
"padv.builtin.query.FindModels".

By default, custom tasks run once on the project. If you only
want the task to run once for your project, do not specify an
IterationQuery.

InputQueries (optional) Inputs to the task. For example, to have the task run on each
artifact that the task iterates over, specify the built-in query
"padv.builtin.query.GetIterationArtifact". The
query padv.builtin.query.GetIterationArtifact
returns the current artifact that the task is iterating over.

The task results in the I/O column show the task inputs under
Inputs.

InputDependencyQuery
(optional)

Artifacts that inputs to the task depend on. The built-in tasks
specify InputDependencyQuery as
padv.builtin.query.GetDependentArtifacts to get the
dependent artifacts for each task input.

For example, if you specify a model as an input to a task and
you specify InputDependencyQuery as
padv.builtin.query.GetDependentArtifacts, the build
system can find artifacts, such as data dictionaries, that the
model uses.

The task results in the I/O column show the task inputs under
Dependencies.

OutputDirectory (optional) Directory where the task outputs artifacts.

If you do not specify OutputDirectory for a custom task, the
build system stores task outputs in the
DefaultOutputDirectory specified by
padv.ProcessModel.

Keep or Override run Method

The run method defines the action that your custom task performs. The input argument is a cell
array that contains the input artifacts from your input queries. Each element in input corresponds to
each input query that you specify. For example, if you only specify one input query,
padv.builtin.query.GetIterationArtifact, and you are iterating over each model in the
project (with the iteration query padv.builtin.query.FindModels), you can use the first element
of input, input{1}, to perform an action on each model in the project:

 function taskResult = run(obj,input)
 % Before the task loads models,
 % save a list of the models that are already loaded.
 loadedModels = get_param(Simulink.allBlockDiagrams(),'Name');

 Create Custom Tasks

4-35

 % identify model name
 % "input" is a cell array of input artifacts
 % First input query gets iteration artifact (a model)
 model = input{1}; % get padv.Artifact from first input query
 modelName = padv.util.getModelName(model);

 % Example task that loads model and displays information
 load_system(modelName);
 disp(modelName);
 disp('Data Dictionaries:')
 disp(Simulink.data.dictionary.getOpenDictionaryPaths)

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;

 % % Close models that were loaded by this task.
 padv.util.closeModelsLoadedByTask(...
 PreviouslyLoadedModels=loadedModels)
 end

The run method must return a padv.TaskResult object. Process Advisor and the build system use
the padv.TaskResult object to assess the status of your custom task. The task result properties
Status, OutputPaths, and ResultValues correspond to the Tasks, I/O, and Details columns in
Process Advisor:

Example Code Appearance in Process Advisor
taskResult.Status = padv.TaskStatus.Pass

taskResult.Status = padv.TaskStatus.Fail

taskResult.Status = padv.TaskStatus.Error

taskResult.OutputPaths=string(...
 fullfile("PA_Results","myFile.txt"));

4 Customize Your Process Model

4-36

Example Code Appearance in Process Advisor
taskResult.ResultValues.Pass = 1;
taskResult.ResultValues.Warn = 2;
taskResult.ResultValues.Fail = 3;

Keep or Override Dry-Run Functionality

Optionally, you can change how your custom tasks dry-run by:

• Overriding the dryRun method for class-based tasks
• Specifying the task property DryRunAction for function-based tasks
• Changing the default dry-run results for all tasks in your process model by modifying the

DefaultDryRunResults property for padv.ProcessModel. If a task does not have a dry-run
functionality defined, the task returns these default dry-run results.

Override dryRun Method

To override the dry-run functionality for a class-based custom task, you can override the dryRun
method. Inside the classdef, in the methods, you can add a dryRun function that can perform your
custom dry-run functionality. In general, the dryRun method should use the following method
signature:

function taskResult = dryRun(obj, input)
 ...
end

For example, the following code defines a dry-run method that takes the current iteration artifact and
checks if the artifact is a model (sl_model_file). If the artifact is a model, then the dry-run
generates representative output text files for the task. Otherwise, the task returns a failing task
status.

function taskResult = dryRun(obj, input)
 taskResult = padv.TaskResult;
 iterationArtifact = input{1};

 if ismember('sl_model_file',iterationArtifact.Type)
 % If input is model, output text file with same name as model
 modelName = iterationArtifact.Alias;
 taskResult.OutputPaths = fullfile(obj.resolvePath(obj.OutputDirectory),...
 modelName+".txt");
 else
 taskResult.Status = padv.TaskStatus.Fail;
 disp('Invalid input. Expected SLX model file.')
 end

end

You can use the dryRun method to define validation criteria for your task iterations, inputs, and
outputs that you can dry-run without needing to perform the task action itself.

Change Default Dry-Run Results

By default, if a task does not have a dry-run functionality defined, the task returns the default dry-run
results specified by the padv.ProcessModel property DefaultDryRunResults. You can create a

 Create Custom Tasks

4-37

different set of default dry-run results by creating and using a padv.TaskResult object with
different property values. For example, to have the default dry-run results be failing task results with
specific result values in the Details column, in your process model you can create a
padv.TaskResult object and update the value of the DefaultDryRunResults property:

res = padv.TaskResult;
res.Status = padv.TaskStatus.Fail;
res.ResultValues = struct(...
 "Pass",1,...
 "Warn",2,...
 "Fail",3);

pm.DefaultDryRunResults = res;

Use Custom Task in Process

Add your custom task to your process model by using the addTask function. For example:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,processLibrary.task.MyCustomTask);

end

This example assumes that you saved your class file in the +task subfolder inside the
+processLibrary folder.

You can confirm that your custom task is in the process by opening Process Advisor. In the MATLAB
Command Window, enter:

processAdvisorWindow

The custom task, MyCustomTask, is in the Tasks column.

Run the task to confirm that the custom task runs and returns the expected status and results.

4 Customize Your Process Model

4-38

Note Certain MATLAB code requires a display to run successfully. If you run MATLAB using the -
nodisplay option or you use a machine that does not have a display (like many CI runners and
Docker containers), you should set up a virtual display server before using your custom task.

For information, see “Set Up Virtual Display Machines Without Displays” on page 5-26.

Example Custom Tasks
Perform Post-Processing on Task Results

You can use custom tasks to perform pre-processing or post-processing actions. For example, suppose
you want to run Model Advisor and if checks generate a failure or a warning, you want the task to
fail. There are no built-in tasks that perform this exact functionality by default, but the built-in task
padv.builtin.task.RunModelStandards runs Model Advisor and the task fails if a check
generates a failure.

You can use a custom task to create your own version of
padv.builtin.task.RunModelStandards that overrides the results from the task to specify that
if a Model Advisor check returns a warning, the task should also fail.

This example shows a custom task that inherits from the built-in task
padv.builtin.task.RunModelStandards, overrides the input queries to use the file
sampleChecks.json as the Model Advisor configuration file, and extends the run method of the
built-in task to fail the task if Model Advisor returns warnings.

classdef MyRunModelStandards < padv.builtin.task.RunModelStandards
 % RunModelStandards, but use my Model Advisor configuration file
 % and fail the task when there are warnings from Model Advisor checks

 methods
 function obj = MyRunModelStandards(options)

 arguments
 options.Name = "MyRunModelStandards";
 options.Title = "My Check Modeling Standards";
 end

 obj@padv.builtin.task.RunModelStandards(Name = options.Name);
 obj.Title = options.Title;
 % specify current model (iteration artifact) and
 % Model Advisor configuration file as inputs to the task
 obj.addInputQueries([padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.FindFileWithAddress(...
 Type = 'ma_config_file',...
 Path = fullfile('tools','sampleChecks.json'))]);

 end

 function taskResult = run(obj,input)

 % use RunModelStandards to run Model Advisor
 taskResult = run@padv.builtin.task.RunModelStandards(obj,input);
 % If checks for a model fail, then the status will be
 % set to fail.

 Create Custom Tasks

4-39

 % But you can extend the built-in task to specify that
 % if checks for a model generate a warning, then the
 % task status will also be set to fail.
 if taskResult.ResultValues.Warn > 0
 taskResult.Status=padv.TaskStatus.Fail;
 end

 end

 end

end

Note In this example, the run method of the custom task extends the run method of the built-in task
by calling it from within the custom task run method. But you can also reimplement the run method
for a custom task to implement your own version of the run method. For more information and
common class designs, see “Modify Inherited Methods”.

Run Custom Task for Project

Suppose that you want to return a list of the data dictionaries in your project. There are no built-in
tasks that perform this functionality, so you can create a custom task that inherits directly from the
base class padv.Task and use the arguments to specify the behavior of the custom task.

classdef ListAllDataDictionaries < padv.Task

 methods
 function obj = ListAllDataDictionaries(options)

 arguments
 options.InputQueries = padv.builtin.query.FindArtifacts(...
 ArtifactType="sl_data_dictionary_file");
 options.Name = "ListAllDataDictionaries";
 end
 inputQueries = options.InputQueries;
 obj@padv.Task(options.Name, ...
 Title = "My Custom Task for SLDD files", ...
 InputQueries = inputQueries, ...
 DescriptionText = "My Custom Task for SLDD files", ...
 Licenses={});
 end

 function taskResult = run(~, input)
 % Print names of SLDDs
 disp([input{1}.Alias]')
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 taskResult.ResultValues.Pass = 1;
 end
 end
end

In the custom task, you can find the data dictionaries in the project by using the query
padv.builtin.query.FindArtifacts and specifying the query as one of the InputQueries for
the task. In the run function, you can specify the action that the task performs and specify the task

4 Customize Your Process Model

4-40

results, in a format that Process Advisor can recognize, by using a padv.TaskResult object. The
input is a cell array of input artifacts that the build system automatically creates based on the
InputQueries that you specify. In this example, the first cell in input is an array of
padv.Artifact objects that represent the data dictionaries in the project. The disp function can
display the aliases of the data dictionaries in the MATLAB Command Window. When you specify the
task result Status, that sets the task status in the Tasks column in Process Advisor.
ResultValues.Pass sets the number of passing results in the Details column in Process Advisor.

 Create Custom Tasks

4-41

Find Artifacts by Creating Custom Queries
To find artifacts in your project, you can use the built-in queries that ship with the support package or
you can create your own custom queries. Use the built-in queries where possible. If your use case
requires custom queries, use the following steps to create a custom query. Note that to reconfigure
the functionality of a built-in task, your custom queries can inherit from a built-in query.

After you create a custom query, you can use that query as an input query for a task to modify or filter
the task inputs.

Choose Superclass for Custom Query
There are two ways to define custom queries:

• Inherit from a built-in query — Use this approach when there is a built-in query that is similar to
the custom query that you want to create. When you inherit from a built-in query, like
padv.builtin.query.FindArtifacts, your custom query inherits the functionality of that
query, but then you can override the properties and methods of the class to fit your needs.

• Inherit from padv.Query — Use this approach if your custom query needs to find artifacts in a
way that is not similar to a built-in query. padv.Query is the base class of the built-in queries, so
you must completely define the functionality of the query.

Define and Use Custom Query in Process
1 Create a new MATLAB class in your project.

Tip Namespaces can help you organize the class definition files for your custom queries. In the
root of your project, create a folder +processLibrary with a subfolder +query and save your
class in that folder.

To share your custom queries across multiple process models in different projects, consider
creating a referenced project that contains your folders and class definition files. Your main
projects can then use the referenced project as a shared process library.

2 Use one of these approaches to define your custom query:

• If you are inheriting from a built-in query, you can replace the contents of your class file with
this example code:

classdef MyCustomQuery<padv.builtin.query.FindArtifacts
 % query definition goes in this class
 % by default, this query finds all artifacts in the project
 methods
 function obj = MyCustomQuery(NameValueArgs)
 arguments
 NameValueArgs.Name = "MyCustomQuery";
 end
 end
 end
end

This example query inherits from the built-in query padv.builtin.query.FindArtifacts,
but you can change that line of code to inherit from another built-in query. Use the properties
of the query to specify which sets of artifacts you want the query to return.

4 Customize Your Process Model

4-42

Note If you want to override the run method for a built-in query, check which input
arguments the run method for the built-in query accepts.

• If you are inheriting from padv.Query, you can replace the contents of your class file with
this example code:

classdef MyCustomQuery < padv.Query

 methods
 function obj = MyCustomQuery(NameValueArgs)
 obj@padv.Query("MyCustomQuery");
 end

 function artifacts = run(obj,~)
 artifacts = padv.Artifact.empty;
 % Core functionality of the query goes here
 % artifacts = padv.Artifact(artifactType,...
 % padv.util.ArtifactAddress(fullfile(fileparts));

 end
 end
end

A query must have:

• a unique name, specified using the Name property
• a run function that returns either a padv.Artifact object or array of padv.Artifact

objects. For more information, see padv.Artifact.
3 You can test your custom query in the MATLAB Command Window executing the run function.

For example, for a query MyCustomQuery saved in the namespace processLibrary.query:

run(processLibrary.query.MyCustomQuery)

Note that your project needs to be open for the query to find artifacts.
4 You can use your custom query in your process model. For example, you can control which

artifacts a task iterates over by using your custom query as the iteration query for a task:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 t = addTask(pm,"MyCustomTask",...
 IterationQuery = processLibrary.query.MyCustomQuery);

end

This example assumes that you saved your class file in the +query folder inside the
+processLibrary folder.

5 You can confirm which artifacts your task iterates over by opening Process Advisor. In the
MATLAB Command Window, enter:

processAdvisorWindow

The artifacts that the task iterates over appear under the task name in the Tasks column.

 Find Artifacts by Creating Custom Queries

4-43

Example Custom Queries
Run Task on Data Dictionaries in Project

Suppose you want to find each of the data dictionaries in your project. There are no built-in queries
that perform this functionality by default, but there is a built-in query
padv.builtin.query.FindArtifacts that can find artifacts that meet certain search criteria.
Effectively you can create your own version of the built-in query, but specialized to only find data
dictionaries. You can create a class-based, custom query that inherits from
padv.builtin.query.FindArtifacts and specifies the ArtifactType argument as a Simulink
data dictionary.

classdef FindSLDDs<padv.builtin.query.FindArtifacts
 %FindSLDDs This query is like FindArtifacts,
 % but only returns data dictionaries.
 methods
 function obj = FindSLDDs(NameValueArgs)
 arguments
 NameValueArgs.ArtifactType string = "sl_data_dictionary_file";
 NameValueArgs.Name = "FindSLDDs";
 end
 obj.ArtifactType = NameValueArgs.ArtifactType;
 end
 end
end

The example class FindSLDDs inherits its properties and run function from the built-in query
padv.builtin.query.FindArtifacts, but specifies a unique Name and ArtifactType. The
ArtifactType is specified as sl_data_dictionary_file because that is the artifact type
associated with Simulink data dictionary files. For a list of the valid artifact types, see “Valid Artifact
Types”.

You can have a task run once for each data dictionary in your project by using the custom query as
the iteration query for the task.

function processmodel(pm)
 % Defines the project's processmodel

4 Customize Your Process Model

4-44

 arguments
 pm padv.ProcessModel
 end

 t = addTask(pm,"MyCustomTask",...
 IterationQuery = processLibrary.query.FindSLDDs);

end

Hide File Extension in Process Advisor
By default, the built-in query padv.builtin.query.FindModels returns the model file name and
SLX extension. Suppose that you do not want to see the SLX extension in the Process Advisor user
interface. You can create a custom query that removes the SLX extension from the Alias property:

classdef myCustomQuery < padv.builtin.query.FindModels
 methods
 function obj = myCustomQuery(NameValueArgs)
 arguments
 NameValueArgs.Name = "MyCustomQuery";
 end
 end
 function artifacts = run(obj,~)
 % call run method from FindModels
 artifacts = run@padv.builtin.query.FindModels(obj);
 % iterate over each Artifact and remove the file extension
 for i = 1:length(artifacts)
 if endsWith(artifacts(i).Alias,".slx")
 artifacts(i).Alias = erase(artifacts(i).Alias,".slx");
 end
 end
 end
 end
end

If you use that custom query as the iteration query for a task, the task iterations do not show
the .slx file extension in the Process Advisor user interface.

function processmodel(pm)
 % Defines the project's processmodel

 Find Artifacts by Creating Custom Queries

4-45

 arguments
 pm padv.ProcessModel
 end

 %% Generate Simulink web view
 % Tools required: Simulink Report Generator
 slwebTask = pm.addTask(padv.builtin.task.GenerateSimulinkWebView());
 slwebTask.IterationQuery = processLibrary.query.myCustomQuery;

end

Sort Artifacts in Specific Order
By default, queries sort artifacts alphabetically by the artifact address. If you want your query to sort
artifacts in a different order, you can override the internal sortArtifacts method in a subclass that
defines a custom sort behavior. For example:

classdef FindFileSorted < padv.builtin.query.FindArtifacts
 methods
 function obj = FindFileSorted(options)
 arguments
 options.ArtifactType string
 options.IncludeLabel string
 options.ExcludeLabel string
 options.IncludePath string
 options.ExcludePath string
 options.InProject boolean
 options.FilterSubFileArtifacts boolean
 end
 fwdoptions = namedargs2cell(options);
 obj@padv.builtin.query.FindArtifacts(fwdoptions{:});
 end
 end
 methods(Access = protected)
 % Overload the default sort artifacts logic, in this case
 % Sorting artifacts based upon their string length rather than
 % Alphabetically
 function sortedArtifacts = sortArtifacts(~, artifacts)
 if isempty(artifacts)
 sortedArtifacts = artifacts;
 return;
 end
 namesToSort = arrayfun(@(art) art.ArtifactAddress.getFileAddress,artifacts);

4 Customize Your Process Model

4-46

 [~,idx] = sort(strlength(namesToSort));
 sortedArtifacts = artifacts(idx);
 end
 end
end

Note If you override sortArtifacts, make sure that your implementation only changes the order
of the artifacts, not the data type or structure. Do not use sortArtifacts to add or remove artifacts
from the query results.

 Find Artifacts by Creating Custom Queries

4-47

Test Tasks and Queries
If you are trying to debug or test a task or query, it can be helpful to run the task or query directly
from the MATLAB Command Window. To test a task, you can find the ID for a specific task iteration
and use the runprocess function to run that task iteration. To test a query, you can create an
instance of the query and use the run function to get the artifacts that the query returned.

This example shows how to test a built-in query and then use the artifacts that the query returns to
test a built-in task.

1 Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart
2 Suppose that you want to test the query padv.builtin.query.FindModels. You can create an

instance of this query. In the MATLAB Command Window, enter:

q = padv.builtin.query.FindModels;
3 To see which artifacts the query returns, run the query.

artifacts = run(q)

artifacts =

 1×5 Artifact array with properties:

 Type
 Parent
 ArtifactAddress

In this example, the query returns the five models in the example project.

Tip If you open the ArtifactAddress property, you can see the names of each of the models
returned by the padv.builtin.query.FindModels query.

artifacts.ArtifactAddress

4 To filter the artifacts returned by the query, you can modify the behavior of the query using the
name-value arguments. For example, to exclude artifacts that contain Control in the file path,
you would specify:

q = padv.builtin.query.FindModels(ExcludePath = "Control");
5 Re-run the query to see the updated query results.

artifacts = run(q)

artifacts =

 Artifact with properties:

 Type: "sl_model_file"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]

For this example, the query returns a single Simulink model, AHRS_Voter.slx, since
AHRS_Voter.slx is the only model that does not contain Control in its file path.

artifacts.ArtifactAddress

4 Customize Your Process Model

4-48

ans =

ArtifactAddress

 FileAddress: "02_Models/AHRS_Voter/specification/AHRS_Voter.slx"
 OwningProject: "ProcessAdvisorExample"
IsSubFileArtifact: 0

If the artifact is in a referenced project, the OwningProject returns the name of the referenced
project. If you need to know which project contains an artifact, you can use the
getOwningProject function on the artifact address object.

6 Suppose that you want to run the task padv.builtin.task.GenerateSimulinkWebView on
the AHRS_Voter model returned in artifacts. You can run that specific task iteration by
specifying the Tasks and FilterArtifact name-value arguments for the runprocess
function.

runprocess(...
Tasks = "padv.builtin.task.GenerateSimulinkWebView",...
FilterArtifact = artifacts(1))

Tip You can use the other name-value arguments of runprocess to specify how the task
iteration runs. For example, Force = true forces the task iteration to run, even if the results
are already up-to-date and Isolation = true has the task iteration run without running its
dependencies.

runprocess(...
Tasks = "padv.builtin.task.GenerateSimulinkWebView",...
FilterArtifact = artifacts(1),...
Force = true,...
Isolation = true)

For more information, see runprocess or, in the MATLAB Command Window, enter:

help runprocess

 Test Tasks and Queries

4-49

Group Tasks Using Subprocesses
Within a process, you can use a subprocess to group related tasks, create a hierarchy of tasks, and
share parts of a process. A subprocess is a self-contained sequence of tasks, inside a process or other
subprocess, that can run standalone.

To group the tasks in your process:

1 In the process model, you can add a subprocess by using addSubprocess on your process model
object.

spA = pm.addSubprocess("Subprocess A");
2 Add your tasks directly to the subprocess by using addTask.

tA1 = spA.addTask("Task A1");
tA2 = spA.addTask("Task A2");

Note You do not need to add the task to both the subprocess and process model.
3 Specify the relationship between the tasks and subprocesses in your process.

You can use the dependsOn and runsAfter functions to define the relationships.

For example, the following process model defines a process in which Task 1 runs, then
Subprocess A, and then Subprocess B.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 t1 = pm.addTask("Task 1");

 spA = pm.addSubprocess("Subprocess A");
 tA1 = spA.addTask("Task A1");
 tA2 = spA.addTask("Task A2");
 spB = pm.addSubprocess("Subprocess B");
 tB1 = spB.addTask("Task B1");
 tB2 = spB.addTask("Task B2");

4 Customize Your Process Model

4-50

 % Relationships
 spA.dependsOn(t1);
 tA2.dependsOn(tA1);
 spB.dependsOn(spA);
 tB2.dependsOn(tB1);

end

The build system executes each of the tasks inside a subprocess before existing the subprocess.

The following diagram shows a graphical representation of the relationships defined by that
process model.

Subprocess Boundaries
The relationships that you specify in the process model cannot cross any subprocess boundaries. For
example, in the previous process model, you cannot directly specify that Task A1 depends on Task
1 because that relationship would enter into Subprocess A, crossing the subprocess boundary.

In this case, you need to create a relationship between the Task 1 and Subprocess A instead.

Handling Invalid Dependencies
Suppose you have one subprocess that contains your code generation tasks and another subprocess
that contains your code analysis tasks.

 Group Tasks Using Subprocesses

4-51

spCodeGen = pm.addSubprocess("Code Generation Tasks");
spCodeAnalysis = pm.addSubprocess("Code Analysis Tasks");

Your code analysis tasks need access to the generated code, but the tasks themselves cannot directly
depend on the code generation task because that relationship would cross the subprocess boundary.

If you try to have a code analysis task in one subprocess depend on a code generation task in another
subprocess, Process Advisor generates an error like: Invalid dependency between Task
'padv.builtin.task.RunCodeInspection' and 'padv.builtin.task.GenerateCode'.
Make sure 'padv.builtin.task.GenerateCode' exists in the current process and
that the dependency does not cross any subprocess boundaries.

To pass the generated code from your code generation subprocess to your code analysis subprocess,
you can:

• Update code analysis tasks, like RunCodeInspection, to find and use the generated model code
as an input to the task using the built-in query padv.builtin.query.FindCodeForModel

• Specify that the code analysis subprocess depends on the code generation subprocess

% Update code analysis tasks to find
% and use model code as an input to the task
slciTask = spCodeAnalysis.addTask(...
 padv.builtin.task.RunCodeInspection(...
 InputQueries=padv.builtin.query.FindCodeForModel));

% Code Analysis Subprocess depends on Code Generation Subprocess
spCodeAnalysis.dependsOn(spCodeGen);

4 Customize Your Process Model

4-52

 Group Tasks Using Subprocesses

4-53

Manage Different Build and Verification Workflows Using
Processes

Inside your process model, you can define multiple processes for the different build and verification
workflows, environments, and other situations that your team needs a defined process for. A process
is a group of tasks or subprocesses inside your process model. For example, you can create separate
processes for:

• Smoke testing with fail-fast tasks
• Local prequalification
• CI builds
• Different stages of the development process
• Different product readiness levels

Processes allow you to have multiple build and verification processes standardized and available to
your team, with the tasks configured appropriately for that specific workflow. In Process Advisor, you
can select which process you want to use from the Processes gallery in the toolstrip. APIs like the
runprocess function also allow you to specify which Process to run.

Default Process
When you add tasks and subprocesses to a process model, you are actually adding those tasks and
subprocesses to an intermediate, default process. By default, the default process is "CIPipeline".

You can access the padv.Process object that represents the default process by using the method
findProcess inside the process model.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 processCI = pm.findProcess("CIPipeline");

end

4 Customize Your Process Model

4-54

Overview of Processes
Your process model can contain multiple processes and each process can contain tasks and
subprocesses. For example, you can have one process for CI and another process for fail-fast local
prequalification. Each of those processes can contain tasks and or subprocesses of tasks. Additionally,
you can share tasks and subprocesses across multiple processes.

You can use the padv.Process methods like addTask, addSubprocess,
addDependsOnRelationship, and addRunsAfterRelationship inside the process model to
define the tasks, subprocesses, and relationships for your process.

Define New Process
Add Process

To add a new process inside your process model, use the method addProcess.

For example, you can create a "fail-fast" process that you can use to group smoke tests that you want
to run during your local prequalification:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 processCI = pm.findProcess("CIPipeline");
 processFailFast = pm.addProcess("Fail-Fast");

end

Define Process Using Process-Specific Methods

When you define multiple processes inside your process model, use padv.Process methods to add
tasks, subprocesses, and relationships directly to your process. Unlike the methods for
padv.ProcessModel, which add tasks and subprocesses to the default process inside your process
model, the padv.Process methods allow you to specify which specific process you want to add a

 Manage Different Build and Verification Workflows Using Processes

4-55

task, subprocess, or relationship to. For example, if you have multiple processes and want to specify a
dependency between two tasks inside a process, use the padv.Process method
addDependsOnRelationship to specify that dependency. The method
addDependsOnRelationship accepts the process name as an input argument. Using process-
specific methods is especially important if you share tasks across multiple processes and need to
define different relationships to that task within each process.

The class padv.Process has the methods:

addTask Add task to process

myProcess.addTask("myTask");

addSubprocess Add subprocess to process

myProcess.addSubprocess("mySubprocess");

addDependsOnRelationship Create dependency between two tasks

myProcess.addDependsOnRelationship(...
 Source=taskB,...
 Dependency=taskA);

The build system always runs the Dependency
task before the Source task.

addRunsAfterRelationship Specify predecessor for task

myProcess.addRunsAfterRelationship(...
 Source=taskB,...
 Predecessor=taskA);

When you run your process, the build system
runs the Predecessor task before the Source
task when possible.

For more information, see padv.Process.
Add Tasks to Process

You can add tasks directly to a specific process by using the addTask method for padv.Process.
For example, suppose that you have two Model Advisor configuration files:

• allChecks.json — Contains all of the Model Advisor checks that you want to run
• quickChecks.json — Contains a subset of your Model Advisor checks for fast-fail checking

For the "CIPipeline" process, you can add an instance of the RunModelStandards task that runs
using allChecks.json. For the "Fail-Fast" process, you can add an instance of the
RunModelStandards task that runs using quickChecks.json.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 processCI = pm.findProcess("CIPipeline");
 processFailFast = pm.addProcess("Fail-Fast");

4 Customize Your Process Model

4-56

 % Define Shared Query and Add Shared Query to Process Model
 findModels = padv.builtin.query.FindModels(Name="ModelsQuery");
 pm.addQuery(findModels);

 % Add Full Model Advisor Checks Task to CI Process
 % (uses allChecks.json MA config file)
 taskFullMA = processCI.addTask(...
 padv.builtin.task.RunModelStandards(...
 Name = "fullMATask",...
 IterationQuery=findModels));
 taskFullMA.addInputQueries(...
 padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=fullfile('tools','allChecks.json')));

 % Add Quick Checks Task to Fail-Fast Processs
 % (uses quickChecks.json MA config file)
 taskFailFastMA = processFailFast.addTask(...
 padv.builtin.task.RunModelStandards(...
 Name = "quickChecksTask",...
 IterationQuery=findModels));
 taskFailFastMA.Title = "Check Modeling Standards (subset)";
 taskFailFastMA.addInputQueries(...
 padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=fullfile('tools','quickChecks.json')));

end

Note that this code shares the query object, findModels, across the tasks to improve performance.
By sharing the query object, the build system can avoid re-running the
padv.builtin.query.FindModels query. For more information, see “Best Practices for Process
Model Authoring” on page 4-64.

Note You can also share a task across multiple processes by creating a task object and adding that
task object to each specific process. For example, to add the GenerateSimulinkWebView task to
the CI and fast-fail processes:

 % Share Task Across Processes
 sharedWebViewTask = padv.builtin.task.GenerateSimulinkWebView(Name="WebViewTask");
 processCI.addTask(sharedWebViewTask);
 processFailFast.addTask(sharedWebViewTask);

Add Task Relationships to Process

To specify a preferred task execution order inside a specific process, use the padv.Process method
addRunsAfterRelationship. For example, to specify that the GenerateSimulinkWebView task
should run after the RunModelStandards tasks:

 % Create Dependencies Within Specific Process
 processCI.addRunsAfterRelationship(Source = sharedWebViewTask,...
 Predecessor = fullMAtask);
 processFailFast.addRunsAfterRelationship(Source = sharedWebViewTask,...
 Predecessor = failfastMAtask);

 Manage Different Build and Verification Workflows Using Processes

4-57

Alternatively, to add a dependency between tasks inside a specific process use the padv.Process
method addDependsOnRelationship. For example, if you have a process processA, you can
specify that taskB depends on taskA:

 % Add dependency between tasks inside Process A
 processA.addDependsOnRelationship(...
 Source = taskB,...
 Dependency = taskA);

Organize Tasks Within Process

You can also use subprocesses to organize tasks within your process. For example, this process model
uses the padv.Process methods to add example tasks and subprocesses to specific processes in the
process model.

function processmodel(pm)
 % This function defines a process model for a project by setting up processes,
 % subprocesses, and tasks within those processes.

 % Validate input arguments
 arguments
 pm padv.ProcessModel
 end

 % --- Processes ---
 % Find existing CI Pipeline process and add new "Fail-Fast" process
 processCI = pm.findProcess("CIPipeline");
 processFailFast = pm.addProcess("Fail-Fast");

 % --- Tasks ---
 % Create example tasks
 task1 = padv.Task("task1");
 task2 = padv.Task("task2");
 task3 = padv.Task("task3");
 taskA1 = padv.Task("taskA1");
 taskA2 = padv.Task("taskA2");
 taskB1 = padv.Task("taskB1");
 taskB2 = padv.Task("taskB2");

 % --- Subprocesses ---
 % Add subprocesses to parent process
 subprocessA = processCI.addSubprocess("subprocessA"); % Add to CI Pipeline process
 subprocessB = processFailFast.addSubprocess("subprocessB"); % Add to Fail-Fast process

 % --- Add Tasks to Processes ---
 processCI.addTask(task1); % Add task1 to CI Pipeline process
 processCI.addTask(task2); % Add task2 to CI Pipeline process
 processFailFast.addTask(task1); % Reuse task1 in Fail-Fast process
 processFailFast.addTask(task3); % Add task3 to Fail-Fast process

 % --- Add Tasks to Subprocesses ---
 subprocessA.addTask(taskA1); % Add taskA1 to subprocessA under CI Pipeline process
 subprocessA.addTask(taskA2); % Add taskA2 to subprocessA under CI Pipeline process
 subprocessB.addTask(taskB1); % Add taskB1 to subprocessB under Fail-Fast process
 subprocessB.addTask(taskB2); % Add taskB2 to subprocessB under Fail-Fast process

end

4 Customize Your Process Model

4-58

Run Specific Process

In Process Advisor, you can select which process you want to use from the Processes gallery in the
toolstrip.

APIs like the runprocess function also allow you to specify which Process to run.

runprocess(Process = "Fail-Fast")
processadvisor("AHRS_Voter","Fail-Fast")

 Manage Different Build and Verification Workflows Using Processes

4-59

Example Process Models

Add One Built-In Task and One Custom Task
function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 % Adding a built-in task
 task1 = addTask(pm,padv.builtin.task.RunModelStandards);

 % Adding a custom task
 task2 = addTask(pm,"Custom Task",Action=@CustomAction);

 % Specify that the custom task should run after the built-in task
 runsAfter(task2,task1);

end

 function results = CustomAction(~)
 disp("Hello, world")
 results = padv.TaskResult;
 end

Specify a Task Execution Order
function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 %% ADD CUSTOM TASKS TO THE DEFAULT PROCESS
 task1 = addTask(pm,"Task 1");
 task2 = addTask(pm,"Task 2");
 task3 = addTask(pm,"Task 3");
 task4 = addTask(pm,"Task 4");
 task5 = addTask(pm,"Task 5");

 %% SPECIFY THE TASK EXECUTION ORDER
 % task2 must run after task1
 runsAfter(task2,task1,StrictOrdering=true);
 % task3 should run after task2
 % but task3 can run independently
 runsAfter(task3,task2);
 % task4 should run after task3
 % but task4 can run independently
 runsAfter(task4,task3);
 % task5 must run after task4
 runsAfter(task5,task4,StrictOrdering=true);

end

4 Customize Your Process Model

4-60

Include Multiple Instances of a Task
If you include duplicates of a task, the Process Advisor will return an error:Invalid definition
in 'processmodel.m' file. Unable to add task because a task named taskName
already exists.

To include multiple instances of the same type of task, you need to specify different values of Name for
each of the tasks. For built-in tasks, you need to override the Name when you create the task iteration.

For example, suppose you want to add two versions of the built-in task
padv.builtin.task.RunTestsPerTestCase. When you create an instance of the task by using
padv.builtin.task.RunTestsPerTestCase, you need to specify a different value for the Name.

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end
 taskA_v1 = addTask(pm,...
 padv.builtin.task.RunTestsPerTestCase(Name="Something else"),...
 Title="Task A - Version 1");
 taskA_v2 = addTask(pm, padv.builtin.task.RunTestsPerTestCase,...
 Title="Task A - Version 2");
end

You can then specify different values for the IterationQuery so that the tasks operate on different
sets of artifacts.

For more information, see “Create Multiple Instances of Tasks” on page 4-22.

Specify Tools that Custom Task Can Launch
When you point to a task in the Process Advisor app, you can click the ellipsis (...) to view more
options. For built-in tasks, you have the option to launch a tool or multiple tools associated with the
task. For example, the built-in task Check Modeling Standards allows you to directly open Model
Advisor for the model that the task iteration runs on.

Note Although you can launch other tools from the Process Advisor app, make sure you use the
Process Advisor app or build system to run your tasks and to collect task results. The app and build
system might not detect changes to settings, files, or task results from actions that you perform in
other tools.

 Example Process Models

4-61

Associate Individual Tool with Task

You can associate a tool with the options menu for a task by specifying the property
LaunchToolAction as a function handle that launches that tool. For example, suppose you have a
custom task that runs on each model in the project and you want the task to launch Dependency
Analyzer for the model. For LaunchToolAction, specify the handle to a function that launches
Dependency Analyzer.

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 customTask = addTask(pm,"MyCustomTask",...
 IterationQuery = padv.builtin.query.FindModels,...
 InputQueries = padv.builtin.query.GetIterationArtifact,...
 LaunchToolAction=@openDependencyAnalyzer);

end

function result = openDependencyAnalyzer(obj, artifact)
 result = struct('ToolLaunched', false);
 % handle non-model task iterations / abstract tasks
 if isempty(artifact)
 result.message = 'Open the tool for an artifact listed under the task title.';
 return;
 end
 % identify model name
 modelName = padv.util.getModelName(artifact);
 % open Dependency Analyzer for model
 depview(modelName)
 result.ToolLaunched = true;
end

The function that launches the tool has two inputs, obj and artifact, and must return a result
structure with the status of the tool launch action, ToolLaunched.

Associate Multiple Tools with Task

You can also provide the option to open multiple tools from the options menu (...) of a task. To
associate multiple tools with a task, specify the task property LaunchToolAction as a cell array of
function handles and specify LaunchToolText as a string array. For each tool action that you specify
in LaunchToolAction, you must have corresponding text specified in LaunchToolText. For
example, to create a custom task that has options for opening the Dependency Analyzer app and the
Clone Detector app:

customTask = addTask(pm,'MyCustomTask',...
 Title = "My Custom Task",...
 IterationQuery = padv.builtin.query.FindModels);
customTask.LaunchToolAction={@openDependencyAnalyzer,@openCloneDetector};
customTask.LaunchToolText=["Open Dependency Analyzer","Open Clone Detector"];

In this case, @openDependencyAnalyzer and @openCloneDetector are handles to custom
functions that open the Dependency Analyzer app and Clone Detector app, respectively.

4 Customize Your Process Model

4-62

function result = openDependencyAnalyzer(obj, artifact)
 result = struct('ToolLaunched', false);
 % handle non-model task iterations / abstract tasks
 if isempty(artifact)
 result.message = 'Open the tool for an artifact listed under the task title.';
 return;
 end
 % identify model name
 modelName = padv.util.getModelName(artifact);
 % open Dependency Analyzer for model
 depview(modelName)
 result.ToolLaunched = true;
end

function result = openCloneDetector(obj,artifact)
 result = struct('ToolLaunched', false);
 % handle non-model task iterations / abstract tasks
 if isempty(artifact)
 result.message = 'Open the tool for an artifact listed under the task title.';
 return;
 end
 % identify model name
 modelName = padv.util.getModelName(artifact);
 % open Clone Detector for model
 clonedetection(modelName)
 result.ToolLaunched = true;
end

 Example Process Models

4-63

Best Practices for Process Model Authoring

Manage Process Model File
Your process model file must:

• Be on the MATLAB path
• Have the file name processmodel.m or processmodel.p

Recommendations

• By default, the build system automatically creates a process model file in the root folder of the
project. If possible, keep your process model file in root folder of the project so that the build
system can detect changes to the file and mark tasks as outdated.

• To avoid unexpected behavior, make sure only one processmodel file is on the path. You can
instruct the build system to detect when there are multiple process model files on the path. For
more information, see the property DetectMultipleProcessModels for padv.ProjectSettings.

Share Queries
You can improve Process Advisor load times by sharing query instances across your process model. If
multiple tasks in the process model use the same iteration query, you can update your code to share a
single query object instance across these tasks. For example, if multiple tasks use FindModels as an
iteration query, you can create a FindModels object and use that object as the iteration query for
those tasks:

Before

taskA = pm.addTask("taskA",...
 IterationQuery = padv.builtin.query.FindModels);
taskB = pm.addTask("taskB",...
 IterationQuery = padv.builtin.query.FindModels);

After
sharedModelsQuery = padv.builtin.query.FindModels(...
 Name="SharedModelsQuery");
taskA = pm.addTask("taskA",...
 IterationQuery = sharedModelsQuery);
taskB = pm.addTask("taskB",...
 IterationQuery = sharedModelsQuery);

Parent Queries

A query can use the results of another query by specifying that query as a parent. For example, the
built-in query padv.builtin.query.FindModelsWithTestCases uses the built-in query
padv.builtin.query.FindModels as a parent query to initially find the models in the project and
then the built-in query padv.builtin.query.FindModelsWithTestCases itself finds the test
cases associated with those models.

You can specify a parent query for the following built-in queries by using the Parent name-value
argument:

4 Customize Your Process Model

4-64

• padv.builtin.query.FindCodeForModel
• padv.builtin.query.FindMAJustificationFileForModel
• padv.builtin.query.FindModelsWithTestCases
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel

For example, multiple built-in queries use the built-in query padv.builtin.query.FindModels as
a parent query. For iteration queries, the build system runs the parent query first to find the initial set
of artifacts that the child query can run on. You can use the Query argument to specify a shared
parent query.

 findModels = padv.builtin.query.FindModels(Name="ModelsQuery");
 findModelsWithTests = padv.builtin.query.FindModelsWithTestCases(...
 Name = "ModelsWithTests",...
 Parent = findModels);
 findTestsForModel = padv.builtin.query.FindTestCasesForModel(...
 Name = "TestsForModel",...
 Parent = findModels);
 pm.addQuery(findModels);
 pm.addQuery(findModelsWithTests);
 pm.addQuery(findTestsForModel);

 Best Practices for Process Model Authoring

4-65

Troubleshoot Missing Tasks, Artifacts, and Dependencies

Troubleshooting Missing Tasks or Artifacts
When you use CI/CD Automation for Simulink Check, the support package creates a digital thread to
capture the attributes and unique identifiers of the artifacts in your project. The digital thread is a set
of metadata information about the artifacts in a project, the artifact structure, and the traceability
relationships between artifacts. The Process Advisor app and build system monitor and analyze the
digital thread to identify artifacts, detect changes to project files, generate task iterations, and
identify outdated task results. The digital thread is cached in a database stored in derived >
artifacts.dmr in the project.

See the next sections for troubleshooting steps and limitations.

Artifact Issues

Before you begin troubleshooting Process Advisor or the build system:

• Check that artifacts are saved in the project.
• If you are using R2022b, check that artifacts are not in a referenced project. Project references

are supported starting in R2023a.
• Artifacts are on the MATLAB search path before you open the Process Advisor app.
• You used the Process Advisor app or build system to run your tasks and to collect task results.
• Artifacts are not saved to a prohibited output folder. Prohibited output folders include the

simulation cache, project resources folder, and .SimulinkProject.
• You have a compiler configured. You should use the same compiler that you use in the target

development environment. If you only have the MinGW® compiler installed on your system, the
mex command automatically chooses MinGW.

• Make sure your tests are testing a model or an atomic subsystem, Stateflow® chart, MATLAB
function, or subsystem reference.

Project Analysis Issues

At the bottom of the Process Advisor app is a Project Analysis Issues pane. After Process Advisor
analyzes the project, the Project Analysis Issues shows errors or warnings that the artifact analysis
generated.

4 Customize Your Process Model

4-66

1 Investigate project analysis issues in the project by clicking on Project Analysis Issues.

• An error indicates that Process Advisor might not have been able to properly analyze
artifacts, trace artifact, or identify outdated results, so the information shown by Process
Advisor might be incomplete.

• A warning indicates that Process Advisor does not support that specific artifact, modeling
construct, or relationship.

2 Fix the issues listed in the Project Analysis Issues pane to make sure the app can fully analyze
the project, generate the expected task iterations, and detect outdated results.

When there are issues with an artifact, check that the artifact does not use the following
unsupported modeling constructs:

Affected Artifact Unsupported Construct
Library Library forwarding table

Self-modifiable masks
Model Saved in release R2012a or earlier

Model loading callbacks
Model shadowing

Test case MATLAB-based Simulink test
Test file Test-file level callbacks
Test suite Test-suite level callbacks

 Troubleshoot Missing Tasks, Artifacts, and Dependencies

4-67

Note To test libraries with Process Advisor, specify function interfaces for each of your library
blocks and use the library-based code generation workflow. For more information, see “Library-
Based Code Generation for Reusable Library Subsystems” (Embedded Coder).

Make sure you only use the library blocks in the model context that you verified. When you test
the model, you can use coverage filters to exclude the library blocks that you already tested.

3 Click the refresh button in the pane to refresh the list of project analysis issues.

Note If you want to filter out certain types of issues, you can get the project settings,
padv.ProjectSettings.get(), and add issue IDs to the FilteredDigitalThreadMessages
property value.

To get a list of the issue messages and issue IDs, use the function getArtifactIssues:

metric_engine = metric.Engine();
issues = getArtifactIssues(metric_engine)
issuesMessages = issues.IssueMessage
issueIDs = issues.IssueId

Suppose that you want to filter out the issue message associated with the issue ID
"alm:artifact_service:CannotResolveElement". You can use the method
addFilteredDigitalThreadMessages to add the issue message to the list of filtered messages:

ps = padv.ProjectSettings.get();
ps.addFilteredDigitalThreadMessages(...
"alm:artifact_service:CannotResolveElement");

Limitations on Incremental Build
There are changes that incremental build does not detect. Tasks depending on those changes will
remain up-to-date and will not execute with Run All. If incremental build does not detect changes to
a file that a task depends on, the file is an undetected dependency.

The table in this section lists the known untracked dependencies.

• The Artifact column lists the artifacts with known untracked dependencies.
• The Undetected Dependency column lists the files that incremental build does not detect

changes to. Changes to these files do not cause tasks associated with the artifact to become
outdated.

For example, if you have a model that uses a referenced global workspace variable and you make a
change to the variable, the task results associated with the model will not become outdated. The table
shows:

• Artifact: Model
• Undetected Dependency: Referenced global workspace variable

4 Customize Your Process Model

4-68

Artifact Undetected Dependency
Model Model callbacks

Referenced global workspace variables*
Global enumeration definitions*
Externally-saved model workspace variables (if auto-initialized)
Data or functions referenced in masks or callbacks inside the model
Known dependencies specified in the model reference rebuild options of a
configuration set
Simulation inputs and simulation outputs specified in model configuration
sets
Signal Editor scenarios
C code referenced in C Caller blocks
Code inside SIL (software-in-the-loop) blocks
Files associated with S-Functions
Code replacement libraries
Custom code
System Composer™ profiles or stereotypes

Test case MATLAB code in:

• Pre-load, post-load, clean-up, and assessment callbacks
• Custom criteria
External configurations
MATLAB test files

*If possible, use a Simulink Data Dictionary file instead. The digital thread tracks changes to data
dictionaries.

Note If you do not want the build system or the Process Advisor app to run incremental builds, you
can disable incremental builds for a project. For more information, see “How to Disable Incremental
Builds” on page 3-19.

You can also force up-to-date tasks to execute by using one of these approaches:

• In the Process Advisor app, either point to a task and click the run button or click Run All >
Force Run All.

• For the runprocess function, specify Force as true.

Note The build system and Process Advisor app are able to track the following test case
dependencies:

• Baseline files in .mat, .xlsm, .xlsb, .xlsx, .xls, and .mldatx format.
• Input files in .mat, .xlsm, .xlsb, .xlsx, and .xls format.

 Troubleshoot Missing Tasks, Artifacts, and Dependencies

4-69

• Parameter override files in .mat, .xlsm, .xlsb, .xlsx, .xls, and .m format.

Other Limitations
There are known limitations in the Process Advisor app and build system:

• Process Advisor only shows results for tasks that you ran using Process Advisor and the build
system.

• If a top model and at least one referenced model have unsaved changes, the Process Advisor is
unable to save the top model and generates the error:The following files were not able
to be saved: <Path to top model>

• If a test harness is saved inside a model file, the Process Advisor and build system return an
incorrect warning that the internal test harness is not on the MATLAB search path. Ignore the
warning, and, if possible, convert your internal test harnesses to external test harnesses so that
the support package can differentiate between changes to the test harness and changes to the
main model.

• When you add the built-in task Check Coding Standards
(padv.builtin.task.AnalyzeModelCode) to your process model, you must add code that
checks if Polyspace is installed and setup. Otherwise, you get an error message: Unrecognized
function or variable 'polyspaceroot'.

For more information on this task, see the built-in task
padv.builtin.task.AnalyzeModelCode.

• For the Check Coding Standards task, if you specify PsAccessEnable as true, make sure you
also specify values for the other Polyspace Access™ Configuration Options. For information, see
“Upload Results to Polyspace Access”.

If you do not specify the other required configuration options, the task returns an error: Task
'padv.builtin.task.AnalyzeModelCode' threw unhandled exception 'Invalid
argument at position 2. Value must not be empty.

• Before you use the pipeline generator, make sure that all of the products used by your pipeline are
licensed and installed. If a product is not licensed or installed, the pipeline generator returns an
error message: Error using + Not enough input arguments. Error in
padv.pipeline.internal.gitlab.PipelineGenerator/createGitlabYMLContent
(line 166) gitlabPipelineFullPath = obj.GitlabOptions.PipelineDirRelPath +
'###' + gitlabPipeline.Name;.

• Your task results can unexpectedly become outdated if you use one of the following queries as an
input query and specify non-empty values for IncludeLabel, ExcludeLabel, IncludePath, or
ExcludePath:

• padv.builtin.query.FindCodeForModel
• padv.builtin.query.FindDesignModels
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel
• padv.builtin.query.FindTopModels
• padv.builtin.query.FindUnits

If you see this behavior, use a different query instead. The following queries are not impacted by
this limitation:

4 Customize Your Process Model

4-70

• padv.builtin.query.FindArtifacts
• padv.builtin.query.FindExternalCodeCache
• padv.builtin.query.FindFilesWithLabel
• padv.builtin.query.FindFilesWithAddress
• padv.builtin.query.FindModels
• padv.builtin.query.FindModelsWithLabel
• padv.builtin.query.FindProjectFile
• padv.builtin.query.FindRequiremetns
• padv.builtin.query.GetDependentArtifacts
• padv.builtin.query.GetIterationArtifact
• padv.builtin.query.GetOutputsOfDependentTask

Resolve Path Issues

If an artifact is not on the MATLAB search path, add the artifact to your project, then close and re-
open the project. When you re-open the project, the MATLAB search path reflects the updated search
path.

Note In R2022b, if a test harness is saved inside a model file, the Process Advisor and build system
return an incorrect warning that the internal test harness is not on the MATLAB search path. Ignore
the warning, and, if possible, convert your internal test harnesses to external test harnesses so that
the support package can differentiate between changes to the test harness and changes to the main
model.

To convert a test harness, open Simulink Test for the main model and, on the Tests tab, click Manage
Test Harnesses > Convert to External Harnesses. Click Yes to convert the affected test
harnesses.

Analyze Project From Scratch
If you experience unexpected project analysis issues, you can clear the current project analysis and
analyze your project from scratch by calling the function padv.util.forceReanalyzeProject:

padv.util.forceReanalyzeProject()

The function forces a reanalysis of the current project by creating backups of the existing artifact
database (artifacts.dmr), clearing the existing project analysis, and reanalyzing the project. The
function also logs project analysis events, which can help with troubleshooting persistent project
analysis issues. Note that when you run the function, the function closes and reopens the project.

For more information, see the utility function padv.util.forceReanalyzeProject.

Note You should only use the function padv.util.forceReanalyzeProject when there are
unexpected project analysis issues. When you clear the existing project analysis file, you might
permanently lose important information, including the UUIDs that the digital thread assigned to
artifacts in your project. Reanalyzing a project might take some time to complete. The
artifacts.dmr file might be used by other project users and if you use other tools that use the
digital thread, you might need to re-run the metrics in those tools.

 Troubleshoot Missing Tasks, Artifacts, and Dependencies

4-71

For general task and result cleanup, use runprocess instead. The runprocess function has name-
value arguments, Clean and DeleteOutputs, that you can use to clean task results and delete task
outputs. For information, see runprocess.

See Also
padv.util.forceReanalyzeProject | runprocess

Related Examples
• “Resolve Missing Artifacts, Links, and Results”

4 Customize Your Process Model

4-72

Integrate into CI Systems

• “Approaches to Running Processes in CI” on page 5-2
• “Integrate into GitHub” on page 5-5
• “Integrate into GitLab” on page 5-7
• “Integrate into Jenkins” on page 5-10
• “Integrate into Other CI Platforms” on page 5-18
• “How Automatic Pipeline Generation Works” on page 5-19
• “Tips for Setting Up CI Agents” on page 5-26
• “Best Practices for Effective Builds” on page 5-30

5

Approaches to Running Processes in CI
With the support package CI/CD Automation for Simulink Check, you can set up your CI system to
automatically run your process when you push code changes to your repository, create a pull request,
or perform other pipeline triggering events. By automatically running your process, you can help your
team find and fix problems in the software and improve software quality. For more information on CI
workflows and benefits, see “Develop and Integrate Software with Continuous Integration”.

Depending on your CI platform, you have different options for how to configure and run your process
using the runprocess function in CI.

Before You Integrate
Before you try to run your process as part of an automated pipeline of tasks in CI, you need to
connect a CI platform, remote repository, and project.

1 CI Platform: Choose a CI platform to run MATLAB. MATLAB integrates with common CI
platforms like GitHub, GitLab, Jenkins, and other platforms.

2 Remote Repository: Create a remote repository for your project. Many platforms, like GitHub
and GitLab, provide source-controlled remote repositories as part of their platform. For other CI
platforms, like Jenkins, you need to host your remote repository on another platform. See the
documentation for your chosen CI platform to identify how you want to set up your remote
repository.

3 CI Agent: Set up a CI agent. Your CI agent machine is responsible for running MATLAB and
communicating the results back to your chosen CI platform. Depending on the CI platform, you
might set up the platform to run MATLAB on your own, self-hosted machine or in the cloud. On
your CI agents, make sure to install the support package and any other products required by
your process. For more information, see “Tips for Setting Up CI Agents” on page 5-26.

4 Project: After you confirm that your CI agent can run MATLAB and has access to your required
products, you can connect your project, remote repository, and CI platform by using source
control with your project and clicking the Remote button to specify the URL for your remote
repository. For more information, see “Use Source Control with Projects”. If you do not already
have a process model defined for your team, see “Automate and Run Tasks with Process Advisor”
on page 3-2 and “Customize Your Process Model”.

GitHub
Basic Integration

For basic CI integration, you can manually author a YAML file that opens your project and runs your
process as part of a workflow. For example, you can define a sequence of steps that check out your
repository code, open your project using the openProject function, and run your process using the
runprocess function. To view an example YAML file and project, in the MATLAB Command Window,
enter processAdvisorGitHubExampleStart.

Recommended Integration

For a more robust and customizable CI integration, you can generate YAML files for your GitHub
workflow by using the pipeline generator in the support package. When you use the generated files in
the workflow that you define in the .github/workflows directory of your repository, your project
can create a pipeline for your process in CI. You can create pipelines that separate tasks into different

5 Integrate into CI Systems

5-2

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

jobs, run model tasks in parallel, and use other custom pipeline behaviors. Specify the pipeline
generator options by using padv.pipeline.GitHubOptions object and then call the pipeline
generator function padv.pipeline.generatePipeline on those options.

For more information, see “Integrate into GitHub” on page 5-5.

GitLab
Basic Integration

For basic CI integration, you can modify the MATLAB YAML template to run the openProject and
runprocess functions as commands in GitLab. For more information, see Use MATLAB with GitLab
CI/CD.

Recommended Integration

For a more robust and customizable CI integration, use the Process Advisor YAML template as your
pipeline YAML file (.gitlab-ci.yml). When you add the file to your project and perform a one-time
setup, your project can automatically create pipelines with different jobs for each task in your process
in CI. You can reconfigure the template to create pipelines that run model tasks in parallel and use
other custom pipeline behaviors. The template uses the pipeline generator,
padv.pipeline.generatePipeline, to analyze your project and process model to automatically
generate the necessary pipeline files for you, so that you do not need to manually update those files
when you make changes to the tasks and artifacts in your project. Inside the script section of the
template, you specify the pipeline generator settings by using the padv.pipeline.GitLabOptions
object.

For more information, see “Integrate into GitLab” on page 5-7.

Jenkins
Basic Integration

For basic CI integration, you can install the MATLAB plugin on your Jenkins agent and use the Run
MATLAB Command build step to open your project and run your process with the openProject
and runprocess functions. For more information, see the plugin on Jenkins Plugins Index.

Recommended Integration

For a more robust and customizable CI integration, use the Process Advisor Jenkinsfile template.
When you add the file to your project and perform a one-time setup, your project can automatically
create pipelines with different jobs for each task in your process in CI. You can reconfigure the
template to create pipelines that run model tasks in parallel and use other custom pipeline behaviors.
The template uses the pipeline generator, padv.pipeline.generatePipeline, to analyze your
project and process model to automatically generate the necessary pipeline files for you, so that you
do not need to manually update those files when you make changes to the tasks and artifacts in your
project. Inside the Pipeline Generation stage of the template, you specify the pipeline generator
settings by using the padv.pipeline.JenkinsOptions object.

For more information, see “Integrate into Jenkins” on page 5-10.

 Approaches to Running Processes in CI

5-3

https://github.com/mathworks/matlab-gitlab-ci-template/blob/main/README.md
https://github.com/mathworks/matlab-gitlab-ci-template/blob/main/README.md
https://plugins.jenkins.io/matlab/

Other Platforms
For other platforms, you can use the matlab command with the -batch option in your CI system.
You can use matlab -batch to run MATLAB code, including the openProject and runprocess
functions, noninteractively. For example, matlab -batch "openProject(pwd);runprocess();"
starts MATLAB noninteractively, opens the project in the current working directory, and runs each of
the tasks in the pipeline defined by the available process model file (processmodel.p or
processmodel.m). MATLAB terminates automatically with the exit code 0 if the specified code
executes successfully without generating an error. Otherwise, MATLAB terminates with a nonzero
exit code.

For more information, see “Continuous Integration with MATLAB on CI Platforms”.

See Also
matlab | openProject | padv.pipeline.generatePipeline | runprocess

Related Examples
• “Integrate into GitHub” on page 5-5
• “Integrate into GitLab” on page 5-7
• “Integrate into Jenkins” on page 5-10
• “Tips for Setting Up CI Agents” on page 5-26

5 Integrate into CI Systems

5-4

Integrate into GitHub
With the pipeline generator, you can generate a pipeline configuration file that you can use to define a
GitHub Actions workflow.

Tip To see an example project that uses an example pipeline configuration file, open the GitHub
example project. In the MATLAB Command Window, enter:

processAdvisorGitHubExampleStart

1 In MATLAB, configure your project to use local Git™ source control. Open your project and, on
the Project tab, click Use Source Control. In the Source control Information dialog box, click
Add Project to Source Control. In the Add to Source Control dialog box, in the Source
control tool list, select Git and then click Convert.

2 In GitHub, create a private GitHub repository. For information, see the GitHub documentation:
https://docs.github.com/en/get-started/quickstart/create-a-repo

3 Create a self-hosted runner. For information, see the GitHub documentation: https://
docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-
hosted-runners

4 In MATLAB, on the Project tab, click Remote and specify the URL for the remote origin in
GitHub where your repository is located. For more information, see “Add a Project to Source
Control”.

5 In your local MATLAB installation, configure the pipeline generation settings. In the Command
Window, create a padv.pipeline.GitHubOptions object and specify the location of your
MATLAB installation for your runner.

The object stores the settings for the pipeline generator. You can modify the other properties of
the object to customize how the pipeline generator creates your pipeline configuration file.

For example, to create a padv.pipeline.GitHubOptions object for a GitHub runner that uses
a MATLAB installation at /opt/matlab/r2023a:

GitHubOptions = padv.pipeline.GitHubOptions
GitHubOptions.MatlabInstallationLocation = "/opt/matlab/r2023a";

Note If you use Git submodules to organize your projects and you want the generated pipeline
configuration file to automatically checkout your Git submodules at the beginning of each stage
of the pipeline, specify the property CheckoutSubmodules as either "true" or "recursive".
For more information, see padv.pipeline.GitHubOptions.

By default, GitHubOptions specifies a SingleStage pipeline architecture that runs all the
tasks in the process within a single stage in CI. To change the number of stages or the grouping
of tasks in the CI pipeline, specify the PipelineArchitecture property. You can specify the
PipelineArchitecture as either:

• SingleStage — A single stage, Runprocess, that runs all the tasks in the process.
• SerialStages — One stage for each task iteration in the process.
• SerialStagesGroupPerTask — One stage for each task in the process.

 Integrate into GitHub

5-5

https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners

• IndependentModelPipelines — Parallel, downstream pipelines for each model. Each
pipeline independently runs the tasks associated with the model. For information how parallel
pipeline architecture work and process considerations, see “Parallel Pipeline Architectures”
on page 5-23.

6 Generate a pipeline configuration file for your project by calling the
padv.pipeline.generatePipeline function on your padv.pipeline.GitHubOptions
object.

padv.pipeline.generatePipeline(GitHubOptions)

By default, the generated pipeline configuration file is named simulink_pipeline.yml and is
located under the project root, in the subfolder derived > pipeline.

The GeneratedYMLFileName and GeneratedPipelineDirectory properties of the
padv.pipeline.GitHubOptions object control the name and location of the generated
pipeline configuration file.

The generated pipeline configuration file makes use of the following GitHub Actions:

• checkout@v3
• cache@v3
• upload-artifact@v3
• download-artifact@v3

To use the generated pipeline configuration file in your GitHub repository, you need to create a
workflow. For general information on how to create a GitHub Actions workflow, see: https://
docs.github.com/en/actions/quickstart#creating-your-first-workflow.

7 Open the generated pipeline configuration file and copy the file contents.
8 In GitHub, create a new directory, .github/workflows.
9 Inside .github/workflows, create a new YAML file, github-actions-demo.yml.
10 Paste the contents of simulink_pipeline.yml inside the github-actions-demo.yml file.
11 Check the new github-actions-demo.yml file into your repository by committing the changes

and creating a pull request.

After you commit your changes, GitHub automatically runs the workflow file, github-actions-
demo.yml.

You can see your process running when you click on the Actions tab. For information on the
GitHub workflow results, see https://docs.github.com/en/actions/quickstart#viewing-your-
workflow-results.

5 Integrate into CI Systems

5-6

https://docs.github.com/en/actions/quickstart#creating-your-first-workflow
https://docs.github.com/en/actions/quickstart#creating-your-first-workflow
https://docs.github.com/en/actions/quickstart#viewing-your-workflow-results
https://docs.github.com/en/actions/quickstart#viewing-your-workflow-results

Integrate into GitLab
The support package CI/CD Automation for Simulink Check contains a GitLab template file that you
can add to your project. After a one-time setup of the template file, you can automatically run
pipelines for your project in GitLab. The template file can configure different parts of your CI jobs
including the stages of the job, the tag for your GitLab Runner, the script that the Runner executes,
and artifacts you want to attach to a successful job. The template file uses the pipeline generator
function padv.pipeline.generatePipeline to generate and execute pipelines for you so that you
do not need to manually update pipeline files when you change the tasks and artifacts in your project.

This example shows the recommended way to use your process in GitLab by using the Process
Advisor GitLab template to generate pipeline configuration files. Alternatively, for basic CI
integration, you can modify the MATLAB YAML template to run the openProject and runprocess
functions as part of your build. For more information, see Use MATLAB with GitLab CI/CD.

Connect Your Project and GitLab
1 In MATLAB, configure your project to use local Git source control. In MATLAB, on the Project

tab, click Use Source Control. In the Source control Information dialog box, click Add Project
to Source Control. In the Add to Source Control dialog box, in the Source control tool list,
select Git and then click Convert.

2 In GitLab, set up a remote GitLab repository by creating a new blank project. For information,
see the GitLab documentation https://docs.gitlab.com/ee/.

3 Install, register, and start a GitLab Runner. The GitLab Runner application allows a machine to
act as a CI agent in GitLab. If you assign a tag to your Runner, make note of the tag name. For
more information, see the GitLab documentation https://docs.gitlab.com/runner/install/
index.html.

4 In MATLAB, on the Project tab, click Remote and specify the URL for the remote origin in
GitLab where your repository is hosted. For more information, see “Add a Project to Source
Control”.

Perform One-Time Setup of GitLab Template
1 In MATLAB, change your current folder to your project root and copy the Process Advisor GitLab

template file into your project. In the MATLAB Command Window, enter:

GitLabTemplate = fullfile(...
matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples",".gitlab-ci-pipeline-gen.yml");

copyfile(GitLabTemplate,".gitlab-ci.yml")

The template file is generic and can work with any project.
2 Add the template file, .gitlab-ci.yml, to your project. The template file contains a CI pipeline

definition for GitLab.
3 Open and inspect template file. The main section of the template file is the script section which

defines what the GitLab Runner executes. In the script section, the template file specifies
commands for opening MATLAB in batch mode, opening the project in the current working
directory of the repository, and then generates a child pipeline that automatically sets up and
executes your pipeline by using the pipeline generator function
padv.pipeline.generatePipeline.

4 To customize how the pipeline generator organizes and executes GitLab jobs, you can modify the
property values of the padv.pipeline.GitLabOptions object in the script section. For

 Integrate into GitLab

5-7

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://github.com/mathworks/matlab-gitlab-ci-template/blob/main/README.md
https://docs.gitlab.com/ee/
https://docs.gitlab.com/runner/install/index.html
https://docs.gitlab.com/runner/install/index.html

example, you can modify the PipelineArchitecture property value to change the number of
stages and the grouping of tasks in each stage of the child pipeline. For more information, see
padv.pipeline.GitLabOptions.

5 If your GitLab Runner uses a tag, edit the .gitlab-ci.yml file to use your GitLab Runner by
replacing instances of the example CI/CD tag padv_demo_ci with the CI/CD tag for your GitLab
Runner.

For example, if your Runner is associated with the tag high_memory, you specify that tag in the
tags field and in the padv.pipeline.GitLabOptions object in the pipeline generator
command.

The tags field specifies the tag for the parent pipeline and the Tags property of
padv.pipeline.GitLabOptions specifies the tag for the child pipelines that the pipeline
generator generates.

Note If you use Git submodules to organize your project, note that by default, the example
pipeline configuration file recursively fetches the Git submodules. If you do not want this
behavior, change the GIT_SUBMODULE_STRATEGY in the YAML file to none:

 GIT_SUBMODULE_STRATEGY: none

6 After you edit the template file, you can commit and push the changes to your GitLab repository.
Your GitLab Runner can now automatically generate and execute a custom pipeline for your
project each time that you submit changes.

By default, a GitLab project automatically considers a file named .gitlab-ci.yml as the CI/CD
configuration file for the repository and uses the file to automatically create pipelines when
triggered.

You do not need to update the .gitlab-ci.yml file if you make changes to your projects or
process model. The pipeline generator generates the child pipeline using the latest project and

5 Integrate into CI Systems

5-8

process model. You only need to update the .gitlab-ci.yml file if you want to change how the
pipeline generator organizes and executes the pipeline.

Generated Pipeline in GitLab
In GitLab, your pipeline will contain two upstream jobs:

• SimulinkPipelineGeneration — Generates a child pipeline file.
• SimulinkPipelineExecution — Executes the child pipeline file. By default, the child pipeline

contains these downstream jobs:

• One job for each task defined in the process model file
• One job, Generate_PADV_Report, that generates a Process Advisor build report
• One job, Collect_Artifacts, that collects build artifacts

The pipeline generator automatically generates JUnit-style XML reports for each task. When you open
the SimulinkPipelineExecution job in GitLab, the Tests tab shows a summary of the task results.
For information on how JUnit information appear in GitLab, see the GitLab documentation: https://
docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab. If you do not
want to generate JUnit reports, specify the GenerateJUnitForProcess property in
padv.pipeline.GitLabOptions as false.

 Integrate into GitLab

5-9

https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab
https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab

Integrate into Jenkins
A pipeline is a collection of automated procedures and tools that execute in a specific order to enable
a streamlined software delivery process. CI systems allow you to define and configure a pipeline by
using a pipeline file. In Jenkins, you can configure your pipeline by using a Jenkinsfile that you store
in your project. The Jenkinsfile can configure different parts of your CI/CD jobs including the stages
of the job, the label for the Jenkins agent that executes the pipeline, the script that the agent
executes, and artifacts you want to attach to a successful job.

The support package CI/CD Automation for Simulink Check comes with an example Jenkinsfile that
you can add to your project to run pipelines in Jenkins. When you use the example Jenkinsfile, the file
generates and loads pipelines for you so that you do not need to manually update pipeline files when
you change the tasks and artifacts in your project.

Tip To see an example project that uses the example Jenkinsfile, open the Jenkins example project. In
the MATLAB Command Window, enter:

processAdvisorJenkinsExampleStart

Integrate Using Default Options

Note This example assumes that Jenkins and your project are connected to your source control
system. For an example of how to use GitLab for version control and Jenkins for continuous
integration, see the Appendix in https://www.mathworks.com/company/newsletters/articles/
continuous-integration-for-verification-of-simulink-models.html.

1 Connect your project to Jenkins by installing the following plugins on your Jenkins controller:

• MATLAB Plugin for Jenkins. The plugin allows you to use the runMATLABCommand command
to run MATLAB in freestyle and multi-configuration (matrix) Jenkins projects. For information,
see the plugin on Jenkins Plugin Index: https://plugins.jenkins.io/matlab/

• Jenkins Core Plugin, which allows pipelines to archive artifacts using the archiveArtifacts
step. For information, see the Jenkins documentation: https://www.jenkins.io/doc/pipeline/
steps/core/#archiveartifacts-archive-the-artifacts

• JUnit Plugin, which allows Jenkins to show test failures and trends directly in the user
interface. For information, see https://plugins.jenkins.io/junit/.

• Job Cacher Plugin, which allows Jenkins to store caches. For information, see https://
plugins.jenkins.io/jobcacher/.

2 Change your current folder to your project root and copy the example Jenkinsfile file into your
project.

exampleJenkinsfile = fullfile(...
matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples","Jenkinsfile_pipeline_gen");

copyfile(exampleJenkinsfile,"Jenkinsfile")

Note The example Jenkinsfile is generic and can work with any project.

5 Integrate into CI Systems

5-10

https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://plugins.jenkins.io/matlab/
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/jobcacher/
https://plugins.jenkins.io/jobcacher/

3 Open and inspect the Jenkinsfile file in your project.

The file Jenkinsfile defines a parent pipeline. The parent pipeline uses the pipeline generator,
padv.pipeline.generatePipeline, to automatically generate and execute an internal
pipeline for your project. The options for the internal pipeline are specified by the object
padv.pipeline.JenkinsOptions.

4 In your Jenkinsfile, update the file to use the:

• Git branch, credentialsId, and url for your repository. For example:

 git branch: 'testBranch',
 credentialsId: 'jenkins-common-creds',
 url: 'git://example.com/my-project.git'

• Path to the bin directory for your MATLAB installation. For example:

• env.PATH = "C:\\Program Files\\MATLAB\\R2024a\\bin;${env.PATH}" // Windows
// env.PATH = "/usr/local/MATLAB/R2024a/bin:${env.PATH}" // Linux
// env.PATH = "/Applications/MATLAB_R2024a.app/bin:${env.PATH}" // macOS

• withEnv(["PATH=C:\\Program Files\\MATLAB\\R2024a\\bin;${env.PATH}"]) { // Windows
// withEnv(["PATH=/usr/local/MATLAB/R2024a/bin:${env.PATH}"]) { // Linux
// withEnv(["PATH=/Applications/MATLAB_R2024a.app/bin:${env.PATH}"]) { // macOS

Now your Jenkinsfile file contains the Git repository information and path to the MATLAB
installation for your CI setup.

 Integrate into Jenkins

5-11

5 Add your Jenkinsfile to your project.
6 Push the changes to your project to source control. If your Jenkins project is not automatically

triggered by pushing changes to source control, manually trigger your Jenkins pipeline.

By default, a Jenkins project automatically considers the file Jenkinsfile at the root of the
source control repository as the CI/CD configuration file for the build. Your Jenkins agent can
now automatically generate and execute a custom, internal pipeline for your project each time a
Jenkins build triggers.

Note You do not need to update the Jenkinsfile file if you make changes to your projects or
process model. The pipeline generator generates the internal pipeline using the latest project
and process model. You only need to update the Jenkinsfile file if you want to change how the
pipeline generator organizes and executes the pipeline.

In Jenkins, your pipeline will contain two upstream jobs:

• Git_Clone — Loads your Git repository information.
• Pipeline Generation — Automatically generates and loads a downstream Jenkinsfile that defines

a Jenkins pipeline for your process. By default, the downstream pipeline contains:

• One job for each task defined in the process model file

5 Integrate into CI Systems

5-12

• One job, Generate_PADV_Report, that generates a Process Advisor build report
• One job, Collect_Artifacts, that collects build artifacts

The pipeline generator automatically generates JUnit-style XML reports for each task. Jenkins can
use the JUnit reports to show test failures and trends directly in the user interface. For information
on how Jenkins displays JUnit information, see the Jenkins documentation: https://plugins.jenkins.io/
junit/. If you do not want to generate JUnit reports, specify the GenerateJUnitForProcess
property in padv.pipeline.JenkinsOptions as false.

If you want to change how the downstream jobs get organized and executed, you can modify the
properties of the padv.pipeline.JenkinsOptions. For example, you can modify the
PipelineArchitecture property to change the number of stages and the grouping of tasks in each
stage of the downstream pipeline.

For more information, see “Customize Downstream Pipeline” on page 5-13 or enter this code in the
MATLAB Command Window:

help padv.pipeline.JenkinsOptions

Customize Downstream Pipeline
You can use the properties of padv.pipeline.JenkinsOptions to control which Jenkins agent to
associate with the downstream pipeline, the number of stages and the grouping of tasks in the
downstream pipeline (defined by the pipeline architecture), how tasks execute, and artifact collection
for CI jobs.

For example, in your Jenkinsfile file you can change the Pipeline Generator stage to specify
different values for the AgentLabel, RerunFailedTasks, and PipelineArchitecture properties
in padv.pipeline.JenkinsOptions:

 // Requires MATLAB plugin
 stage('Pipeline Generation'){

 env.PATH = "C:\\Program Files\\MATLAB\\R2024a\\bin;${env.PATH}" // Windows
 // env.PATH = "/usr/local/MATLAB/R2024a/bin:${env.PATH}" // Linux
 // env.PATH = "/Applications/MATLAB_R2024a.app/bin:${env.PATH}" // macOS

 /* Open the project and generate the pipeline using
 appropriate options */

 runMATLABCommand '''cp = openProject(pwd);
 padv.pipeline.generatePipeline(...
 padv.pipeline.JenkinsOptions(...
 AgentLabel="high_memory",...
 RerunFailedTasks = true,...
 PipelineArchitecture = padv.pipeline.Architecture.SerialStages,...
 GeneratedJenkinsFileName = "simulink_pipeline",...
 GeneratedPipelineDirectory = fullfile('derived','pipeline')));'''
 }

This code specifies that the pipeline should be associated with the Jenkins agent labeled
high_memory, should try to rerun failed tasks, and should use a serial stage pipeline architecture
that creates a job for each task iteration (for example, one job for running Check Modeling
Standards on ModelA and one job for running Check Modeling Standards on ModelB). For more

 Integrate into Jenkins

5-13

https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/junit/

information about the available pipeline architectures, see “Customize Pipeline Architecture” on page
5-14.

To see a list of the available properties in the MATLAB Command Window, enter:

help padv.pipeline.JenkinsOptions

Customize Pipeline Architecture

After you run a pipeline, the Stage View in Jenkins shows the status of each stage in the build.

To change the stages that appear in the Stage View for your automatically generated pipeline, you
can specify a different pipeline architecture in the call to the pipeline generator. The pipeline
architecture defines the number of stages in your pipeline and the grouping of tasks in each stage. If
a pipeline has more stages, you can more easily identify where failures occurred, but the pipeline
execution might not be as efficient.

If you specify the pipeline architecture as:

• padv.pipeline.Architecture.SingleStage — The generated pipeline contains a single
stage, Runprocess, that runs all tasks.

padv.pipeline.JenkinsOptions(...
PipelineArchitecture = padv.pipeline.Architecture.SingleStage)

• padv.pipeline.Architecture.SerialStagesGroupPerTask — The generated pipeline
contains one stage for each type of task.

padv.pipeline.JenkinsOptions(...
PipelineArchitecture = padv.pipeline.Architecture.SerialStagesGroupPerTask)

5 Integrate into CI Systems

5-14

• padv.pipeline.Architecture.SerialStages — The generated pipeline contains one stage
for each task iteration.

padv.pipeline.JenkinsOptions(...
PipelineArchitecture = padv.pipeline.Architecture.SerialStages)

• padv.pipeline.Architecture.IndependentModelPipelines — The generated pipeline
creates parallel pipelines, one for each model, that independently run the tasks associated with
each model.

padv.pipeline.JenkinsOptions(
PipelineArchitecture = padv.pipeline.Architecture.IndependentModelPipelines)

 Integrate into Jenkins

5-15

Comparison of Pipeline Architectures

The following table compares the different pipeline architectures.

Type Pipeline Architecture Value Benefits Limitations
Serial SingleStage One stage for all tasks.

Efficient execution since
the CI system only
launches MATLAB and
the project one time.

Difficult to identify
where a failure occurred.
If the pipeline fails, you
must investigate the
logs, build report, or
other output files to
identify which specified
task or task iteration
failed.

5 Integrate into CI Systems

5-16

Type Pipeline Architecture Value Benefits Limitations
SerialStagesGroupPerTask One stage for each task.

The stages run in series,
not in parallel.

If the pipeline fails, you
can see which task
failed, directly in the
Stage View.

Less efficient execution
because the CI system
has to close and reopen
MATLAB and the project
one time for each stage

SerialStages One stage for each task
iteration. The stages run
in series, not in parallel.

If the pipeline fails, you
can see which task
iteration failed, directly
in the Stage View.

Inefficient execution
because the CI system
has to close and reopen
MATLAB and the project
one time for each stage

Parallel IndependentModelPipelines Parallel pipelines, one for
each model,
independently run the
tasks associated with
each model.

The pipeline executes
efficiently because the
tasks associated with
each model run in
parallel.

This pipeline
architecture is only
available for process
models in which each
model can run
independently. If models
depend on each other,
you must use one of the
serial pipeline
architectures instead.

 Integrate into Jenkins

5-17

Integrate into Other CI Platforms
You can use any of the MATLAB-supported Continuous Integration (CI) platforms to run your
automated pipeline of tasks. For information on the supported platforms, see “Continuous Integration
with MATLAB on CI Platforms”.

Run MATLAB in Batch Mode
Use the matlab command with the -batch option in your CI system. You can use matlab -batch
to run MATLAB code, including the runprocess function, noninteractively. For example, matlab -
batch "runprocess" starts MATLAB noninteractively and runs each of the tasks in the pipeline
defined by the process model file (processmodel.p or processmodel.m) in the project. MATLAB
terminates automatically with the exit code 0 if the specified code executes successfully without
generating an error. Otherwise, MATLAB terminates with a nonzero exit code.

Generate and Run Pipeline Using runprocess Function
You can generate and run your pipeline in CI by using the runprocess function. By default, the
runprocess functions runs all the tasks in your process, but you can also use one or more name-
value arguments to specify how the pipeline runs. For example:

Run All Tasks

To run each of the tasks associated with the current project, enter:

runprocess()

Run Specific Task

To only run a specific set of tasks, provide the task names to the Tasks argument. For example:

% run the Generate Simulink Web View task
% and the Check Modeling Standards tasks
runprocess(...
Tasks = ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"])

Run Tasks for Specific Artifact

To only run the tasks associated with a specific artifact, use the FilterArtifact argument. For
example, to only run tasks for the AHRS_Voter model, you can specify the value as the relative path
to the model:

% run only the AHRS_Voter tasks
runprocess(...
FilterArtifact = fullfile(...
"02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

For more information, see runprocess.

5 Integrate into CI Systems

5-18

How Automatic Pipeline Generation Works
A pipeline is a collection of automated procedures and tools that execute in a specific order to enable
a streamlined software delivery process. CI systems allow you to define and configure a pipeline by
using a pipeline file.

• In GitLab, you can configure your pipeline by using a .yml file that you store in your project.
The .yml file can configure different parts of your CI/CD jobs including the stages of the job, the
tag for your GitLab Runner, the script that the Runner executes, and artifacts you want to attach
to a successful job. The support package contains an example pipeline configuration file that you
can use in your project.

• In Jenkins, you can configure your pipeline by using a Jenkinsfile that you store in your project.
The Jenkinsfile can configure different parts of your CI/CD jobs including the stages of the job, the
label for the Jenkins agent that executes the pipeline, the script that the agent executes, and
artifacts you want to attach to a successful job. The support package contains an example pipeline
configuration file, Jenkins, that you can use in your project.

Typically, when you configure a CI pipeline, you need to manually create and update pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the
example pipeline configuration files use a pipeline generator function
(padv.pipeline.generatePipeline) that can automatically generate the updated pipeline
configuration files for you. After you do the initial setup for the pipeline generator, you do not need to
manually update your pipeline configuration files. When you trigger your pipeline, the pipeline
generator uses the digital thread to analyze the files in your project and uses your process model to
automatically generate pipeline configuration files for you.

You can automatically generate pipeline configuration files on these CI platforms:

• GitLab
• Jenkins

Summary of Support
When you use the support package to integrate a model-based design (MBD) project into CI, there
are three main approaches to creating and maintaining your pipeline configuration files:

• Manual Authoring — Each time you need to create or update your pipeline, you manually write,
update, and check-in a pipeline configuration file that uses the runprocess function to run tasks.
This approach allows you the most flexibility and ability to customize your pipeline, but requires
that you regularly maintain the pipeline configuration file.

• Manual Generation — Each time you commit changes, you manually generate a pipeline
configuration file using the padv.pipeline.generatePipeline function in your local MATLAB
installation and then manually check the pipeline configuration file into your CI system. With this
approach, you do not need to manually write the pipeline configuration file, but you do need to
manually regenerate the pipeline for each submission.

• Automatic Generation — You perform a one-time setup of a parent pipeline configuration file that
automatically calls the padv.pipeline.generatePipeline function and automatically
generates an up-to-date, child pipeline configuration file that runs your process in CI. With this
approach, you do not have to manually write or generate pipeline configuration files, but setting
up a branching workflow can be complex.

The following table lists which approaches the support package supports on each CI platform.

 How Automatic Pipeline Generation Works

5-19

Approaches \
Platforms

GitHub GitLab Jenkins Other MATLAB-
Supported CI
Platforms

Manual Authoring ✔ ✔ ✔ ✔

Manual Generation ✔ (recommended) ✔ ✔
Automatic
Generation

 ✔ (recommended) ✔ (recommended)

For CI platforms, you typically define your CI pipeline by using a pipeline configuration file. For
example, a YAML file on platforms like GitHub and GitLab or a Jenkinsfile on Jenkins.

Typically, when you configure a CI pipeline, you need to manually create and update your pipeline
configuration files as you add, remove, and change the artifacts in your project. However, the support
package has a pipeline generator function padv.pipeline.generatePipeline that you can use to
generate the pipeline configuration files for GitHub, GitLab, and Jenkins.

For example, on a CI platform like GitLab, the pipeline generator can automatically generate the
pipeline configuration files that you would need to create a pipeline that runs each job in your
process, generate a report, and collect the artifacts from the pipeline.

Initial Setup
The major steps to set up the pipeline generator are:

1 Connect your MATLAB project to either a GitLab or Jenkins project.
2 Add the example pipeline configuration file to your project.
3 Edit the example pipeline configuration file to specify credentials or other information needed to

run jobs in your CI system.
4 Optionally, you can edit the example pipeline configuration file to change how the pipeline

generator creates and executes pipelines in CI.
5 Push the changes to your source control system. By default, GitLab projects use .gitlab-

ci.yml as the pipeline configuration file and Jenkins projects use Jenkinsfile as the pipeline
configuration file.

For instructions, see either:

• “Integrate into GitLab” on page 5-7
• “Integrate into Jenkins” on page 5-10

5 Integrate into CI Systems

5-20

Automatically Generated Pipelines
After you perform the initial setup and trigger your pipeline, the pipeline generator generates a
parent pipeline and a child pipeline.

The parent pipeline contains two stages:

• Simulink Pipeline Generation — This stage analyzes your project and process model to
automatically generate the pipeline configuration files to run your process in CI. The main,
generated pipeline configuration file is called simulink_pipeline.yml in GitLab or
simulink_pipeline in Jenkins. If you want to view the generated pipeline configuration files,
the pipeline generator stores the files under the derived > pipeline folder in the project.

• Simulink Pipeline Execution — This stage creates and executes a child pipeline that runs the
tasks in your process, generates a build report, and collects the job artifacts.

By default, the child pipeline contains:

• One stage for each task in your process model.
• One stage that generates a build report, ProcessAdvisorReport.pdf.
• One stage that collects the job artifacts and compresses the artifacts into a zip file,

padv_artifacts.zip.

Optional Pipeline Customization
You can run the pipeline generator using the default settings or you can edit the example pipeline
configuration file to customize how the pipeline generator creates and executes pipelines in CI.

The call to the pipeline generator function (padv.pipeline.generatePipeline) is in the example
pipeline configuration file. The function padv.pipeline.generatePipeline requires you to
specify a CI options object as an input. For GitLab, the CI options object is
padv.pipeline.GitLabOptions. For Jenkins, the CI options object is
padv.pipeline.JenkinsOptions.

The CI options object allows you to specify several properties of the generated CI pipeline, including:

• the pipeline architecture
• whether the pipeline generates a build report
• if and when the pipeline collects artifacts from the build

 How Automatic Pipeline Generation Works

5-21

Pipeline Architecture

The pipeline architecture defines the number of stages and the grouping of tasks in the child pipeline.
You can specify the pipeline architecture by using a padv.pipeline.Architecture object.

By default, the example pipeline configuration files specify the pipeline architecture as
SerialStagesGroupPerTask, which creates one stage for each task in the process model. For
example, one stage for TaskA and one stage for TaskB.

The available pipeline architectures are:

• SingleStage — A single stage, Runprocess, that runs all the tasks in the process.
• SerialStages — One stage for each task iteration in the process.
• SerialStagesGroupPerTask — One stage for each task in the process.
• IndependentModelPipelines — Parallel, downstream pipelines for each model. Each pipeline

independently runs the tasks associated with the model. For information how parallel pipeline
architecture work and process considerations, see “Parallel Pipeline Architectures” on page 5-23.

For more information, see padv.pipeline.GitLabOptions or
padv.pipeline.JenkinsOptions.

Build Report

By default, the pipeline generator creates a stage, Generate_PADV_Report, that generates a build
report for your pipeline. The build report is a PDF file ProcessAdvisorReport.pdf.

If you do not want to generate a report, you can specify the GenerateReport argument as false.
For example, in a GitLab pipeline configuration file:

padv.pipeline.GitLabOptions(GenerateReport = false)

Build Artifacts

By default, the pipeline generator creates a stage, Collect_Artifacts, that collects and compresses
the build artifacts from your pipeline. The ZIP file attached to the Collect_Artifacts stage is called
padv_artifacts.zip. You can download these artifacts to locally reproduce issues seen in CI. For
more information, see “Locally Reproduce Issues Found in CI” on page 3-22.

You can specify if and when you want the pipeline to collect artifacts by specifying the argument
EnableArtifactCollection:

5 Integrate into CI Systems

5-22

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the pipeline succeeds
• "on_failure" — Only collect artifacts when the pipeline fails
• "always", 1, or true — Always collect artifacts

For example, in a GitLab pipeline configuration file:

padv.pipeline.GitLabOptions(EnableArtifactCollection="on_failure")

For more information, “Integrate into GitLab” on page 5-7 or “Integrate into Jenkins” on page 5-10.

Parallel Pipeline Architectures
Starting in R2023b Update 5, the pipeline generator supports a round-trip, parallel CI workflow that
automatically merges the task statuses and project analysis performed in parallel. By default, Process
Advisor and the build system store task statuses and project analysis in an artifact database file,
artifacts.dmr. If you use a parallel pipeline architecture like IndependentModelPipelines, the
pipeline generator needs to merge artifact database files from across different parallel jobs.
Depending on your process model, the pipeline generator can automatically add these stages to the
generated pipeline:

• Create_Base_Artifact_Database — Before running your parallel jobs, the pipeline generator
creates a common ancestor artifact database file, base.dmr, that the pipeline generator can use
when merging the task statuses and project analysis performed in the parallel. This stage uses the
utility function padv.util.saveArtifactDatabase to save a copy of the artifact database file.

• Merge_Artifact_Databases — After running your parallel jobs, the pipeline generator merges the
artifact database files created by each parallel branch with the common ancestor artifact database
file base.dmr. This stage uses the utility function padv.util.mergeArtifactDatabases to
merge the artifact database files into a single artifacts.dmr file that contains the information
from the parallel branches.

If your process model includes code generation and code analysis, the pipeline generator can
automatically merge the artifact database files as part of your top model code generation stage.
For information, see "Considerations for Parallel Code Generation".

When you download your CI artifacts onto your machine, this merged artifacts.dmr file allows you
to see up-to-date task statuses locally in Process Advisor. The Collect_Artifacts stage automatically
includes the artifacts.dmr file inside the derived folder in the artifacts.zip file.

Considerations for Parallel Code Generation

Starting in R2023b Update 5, if you want to use a parallel pipeline architecture and your process
contains code generation and code analysis tasks, you need to either use the example parallel process
model or update your existing process model. These updates allow the tasks in your pipeline to
properly handle shared utilities and code generated across parallel jobs.

Example Parallel Process Model

To see the example parallel process model, you can either:

• Open the Process Advisor example project for parallel pipelines:

processAdvisorParallelExampleStart

 How Automatic Pipeline Generation Works

5-23

• Create a parallel process model using the parallel template:

createprocess(Template = "parallel")

Update Existing Process Model

To update your existing process model for a round-trip parallel CI workflow, you need to:

• Have a task that generates code for your reference models. The task must specify the property
GenerateExternalCodeCache as true and specify an ExternalCodeCacheDirectory. The
external code cache allows your team to generate code in parallel while maintaining up-to-date
task status information. For example:

 % Generate Code for Reference Models
 codegenTask = pm.addTask(padv.builtin.task.GenerateCode("IterationQuery", ...
 padv.builtin.query.FindRefModels));
 codegenTask.UpdateThisModelReferenceTarget = 'IfOutOfDate';
 codegenTask.TreatAsRefModel = true;
 codegenTask.Title = "Reference Model Code Generation";
 codegenTask.GenerateExternalCodeCache = true;
 codegenTask.ExternalCodeCacheDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$', '$ITERATIONARTIFACT$', 'external_code_cache');

• Have a task that generates code for your top models. The task must iterate over the project file,
specify the property GenerateExternalCodeCache as true, and specify an
ExternalCodeCacheDirectory. The external code cache allows your team to generate code in
parallel while maintaining up-to-date task status information. For example:

 % Generate Code for Top Models (at the project-level)
 codegenTopTask = pm.addTask(padv.builtin.task.GenerateCode("IterationQuery", ...
 padv.builtin.query.FindProjectFile,"InputQueries",...
 {padv.builtin.query.FindTopModels,...
 padv.builtin.query.GetOutputsOfDependentTask(...
 "padv.builtin.task.GenerateCode")},...
 "Name", "Top Model Code Generation"));
 codegenTopTask.UpdateThisModelReferenceTarget = 'IfOutOfDate';
 codegenTopTask.TreatAsRefModel = false;
 codegenTopTask.Title = "Top Model Code Generation";
 codegenTopTask.TrackAllGeneratedCode = true;

• Split code analysis tasks into two tasks. One task for reference models and one task for top
models. The task for top models must iterate over the project file. The built-in code analysis tasks,
like padv.builtin.task.RunCodeInspection, are able to unpack the code generation target
from the external code cache by using the utility function
padv.util.unpackExternalCodeCache.

 % Inspect Generated Code for Reference Models
 slciTask = pm.addTask(padv.builtin.task.RunCodeInspection("IterationQuery", ...
 padv.builtin.query.FindRefModels));
 slciTask.ReportFolder = fullfile(defaultResultPath,'code_inspection');
 slciTask.Title = "Ref Model Code Inspection";

 % Inspect Generated Code for Top Models (at the project-level)
 slciTopTask = pm.addTask(padv.builtin.task.RunCodeInspection("IterationQuery", ...
 padv.builtin.query.FindProjectFile,"InputQueries",...
 {padv.builtin.query.GetOutputsOfDependentTask("Top Model Code Generation"),...
 padv.builtin.query.FindTopModels},"Name","Top Model Code Inspection"));
 slciTopTask.Title = "Top Model Code Inspection";
 slciTopTask.ReportFolder = fullfile('$DEFAULTOUTPUTDIR$','code_inspection',...

5 Integrate into CI Systems

5-24

 '$INPUTARTIFACT$');
 slciTopTask.OutputDirectory = string(fullfile('$DEFAULTOUTPUTDIR$','code_inspection'));

• Update the dependsOn and runsAfter relationships in your process model to specify the
relationships for these tasks.

Note There are limitations to the task relationships that the pipeline generator can support. The
pipeline generator requires your process model to only generate one parallel section. If tasks, like
model tasks, run in parallel, you must define your task relationships so that all subsequent tasks
iterate over the project file. The pipeline generator only supports a single shift from parallel to
serial execution per CI build because the pipeline generator only merges the artifact database
files once.

The pipeline generator does not support, for example, a process model that alternates between
tasks that execute in parallel, then in serial, then parallel again.

The example parallel process model uses top model code generation and code analysis tasks that
iterate over the project file to avoid creating multiple parallel sections.

 How Automatic Pipeline Generation Works

5-25

Tips for Setting Up CI Agents
The CI agent is the machine that is responsible for running MATLAB and communicating the results
back to your chosen CI platform. Depending on the CI platform, you might set up the platform to run
MATLAB on your own, self-hosted machine or in the cloud.

To use the support package, you need to install at least these products on your CI agent:

• MATLAB
• Simulink
• Simulink Check
• CI/CD Automation for Simulink Check
• Any other products required by your process

You can programmatically install products by using the MATLAB Package Manager (MPM). For more
information, see https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/MPM.md.

Before you attempt to use your process in CI, make sure that your CI agent can run MATLAB and has
the products that you need to run your process licensed and installed. Certain MATLAB code,
including some built-in tasks, requires a display to run successfully. Since most CI agents and
containers, do not have a display available, you might need to set up a virtual display server before
you run your process on your CI agent.

Note License Considerations for CI: If you plan to perform CI on many hosts or on the cloud,
contact MathWorks (continuous-integration@mathworks.com) for help. Transformational products
such as MathWorks coder and compiler products might require client access licenses (CAL).

Set Up Virtual Display Machines Without Displays
Issue

Certain MATLAB code, including some built-in tasks, requires a display to run successfully. Since
most CI runners and containers do not have a display available, you should set up a virtual display
server before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

Some MATLAB code, including some built-in tasks, can only run successfully if a display is available
for your machine. When there is no display available, MATLAB returns an error.

A machine might not have a display available if either:

• You start MATLAB using the -nodisplay option.
• The machine does not have a display configured and the DISPLAY environment variable is not set.

For example:

• some CI runners

5 Integrate into CI Systems

5-26

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/MPM.md

• some containers, including Docker containers by default
• machines that you SSH into without X11 forwarding

If MATLAB returns an error related to your display, try the following workaround.

Workaround

As a workaround, you can set up a virtual display on the machine to simulate a display environment.
The virtual display allows you to run MATLAB code that requires a display, without having to connect
your machine to a physical display.

1 Choose a server.

There are several common servers that you can install and use to host your virtual display,
including:

• Xvfb — https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html
• VNC server — https://help.ubuntu.com/community/VNC/Servers

2 Install the server on the machine.

For example, to install Xvfb on a Linux® machine:

sudo apt-get install xvfb

Alternatively, for a containerized environment, you can instruct your container image to install
and use the server as the display.

For example, to install and use Xvfb for a Docker container, your Dockerfile can include:

RUN apt-get install --no-install-recommends --yes xvfb
RUN export DISPLAY=:`Xvfb -displayfd 1 &` && \

Tip To access an example Dockerfile that uses Xvfb, enter the following command in MATLAB:

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples"))

3 Run MATLAB in the server environment.

For example, with Xvfb on a Linux machine, you can use the xvfb-run command to run your
MATLAB code with a virtual display. For example:

xvfb-run matlab -batch "openProject(projectPath);runprocess;"

For information, see https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html.

Note Depending on which server you choose, you might need to manually start the server and
set the DISPLAY environment variable on your machine to use your virtual display. The DISPLAY
environment variable cannot be left empty.

 Tips for Setting Up CI Agents

5-27

https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html
https://help.ubuntu.com/community/VNC/Servers
https://manpages.ubuntu.com/manpages/trusty/man1/xvfb-run.1.html

Create Docker Container for Support Package
A container is an isolated unit of software that contains everything required to run a specific
application. You can use a container as a scalable and reproducible way to deploy and test your
process.

Follow these steps to create a Docker image that includes MATLAB, other MathWorks products, and
the CI/CD Automation for Simulink Check support package. The example Dockerfile installs the
support package and other products by using the MATLAB Package Manager (MPM). Since certain
MATLAB code requires a display to run successfully, the example Dockerfile uses Xvfb to set up a
virtual display for the container. For more information, see “Set Up Virtual Display Machines Without
Displays” on page 5-26.

The MATLAB Docker image is a Linux executable, but can run on any host operating system that
Docker supports. For general information about MATLAB container images, see https://github.com/
mathworks-ref-arch/matlab-dockerfile.

1 Install Docker on your machine. For information, see https://docs.docker.com/get-docker/.
2 To access the example Dockerfile for Process Advisor, open MATLAB and enter:

open(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","samples","Dockerfile"))

3 Save a copy of the file, Dockerfile (no file extension), in a directory that your Docker daemon
can access.

4 Build a Docker image by using the docker build command. You can use the build-time
variables to specify the MATLAB release, MathWorks products, installation location, network
license, and name for your container image. For example:

docker build --build-arg MATLAB_RELEASE=2023b
--build-arg PRODUCTS="MATLAB Simulink Simulink_Check CI/CD_Automation_for_Simulink_Check"
--build-arg MATLAB_INSTALL_LOCATION="/opt/matlab/R2023b"
--build-arg LICENSE_SERVER=port@hostname
-t my_matlab_image_name .

This example code only installs the products required by the support package. If you want to be
able to run all of the built-in tasks, see the example Dockerfile for a list of the other products to
add to the PRODUCTS list.

Use the build-arg LICENSE_SERVER to specify the port and hostname for your network license
manager.

Alternatively, you can place your network.lic file in the same folder as the example Dockerfile,
uncomment the line COPY network.lic ${MATLAB_INSTALL_LOCATION}/licenses in the
example Dockerfile, and run the docker build command without the LICENSE_SERVER build-
arg. For example:

docker build --build-arg MATLAB_RELEASE=2023b
--build-arg PRODUCTS="MATLAB Simulink Simulink_Check CI/CD_Automation_for_Simulink_Check"
--build-arg MATLAB_INSTALL_LOCATION="/opt/matlab/R2023b"
-t my_matlab_image_name .

For more information, see https://docs.docker.com/reference/cli/docker/image/build/ and https://
github.com/mathworks-ref-arch/matlab-dockerfile.

5 Integrate into CI Systems

5-28

https://github.com/mathworks-ref-arch/matlab-dockerfile
https://github.com/mathworks-ref-arch/matlab-dockerfile
https://docs.docker.com/get-docker/
https://docs.docker.com/reference/cli/docker/image/build/
https://github.com/mathworks-ref-arch/matlab-dockerfile
https://github.com/mathworks-ref-arch/matlab-dockerfile

Note The example Dockerfile assumes that you are using the network license manager to license
and run MATLAB. If you run MATLAB using a different licensing approach, contact MathWorks
(continuous-integration@mathworks.com) for help.

5 Create and run a container from the generated image by using the docker run command. For
example:

docker run --init --rm my_matlab_image_name -batch "ver"

For information, see https://docs.docker.com/reference/cli/docker/container/run/

Dry-Run Your Process
Before you try to run your process on your CI agent, you can dry-run your process. The dry-run can
validate your task inputs, generate representative task outputs, and make sure that you have the
required licenses available on your CI agent.

To perform a dry-run, you can use the DryRun argument of the runprocess function. For example:

runprocess(DryRun = true)

To automatically check out the licenses associated with the tasks, you can specify the
DryRunLicenseCheckout argument as true:

runprocess(DryRun = true, DryRunLicenseCheckout = true)

Dry-runs can be helpful for quickly testing out your CI pipeline and making sure that your required
products and licenses are available, locally and on your CI agents. The built-in tasks now have a
dryRun method that generates representative task outputs for each task. You can define your own
custom dry-run functionality by overriding the dryRun method for class-based tasks or specifying the
task property DryRunAction for function-based tasks.

See Also
runprocess

Related Examples
• “Approaches to Running Processes in CI” on page 5-2
• “How Automatic Pipeline Generation Works” on page 5-19

 Tips for Setting Up CI Agents

5-29

https://docs.docker.com/reference/cli/docker/container/run/

Best Practices for Effective Builds

Use Incremental Builds for Regular Submissions
For builds that you perform on a daily or more frequent basis, use incremental builds. Incremental
builds are faster and more efficient, but incremental builds skip tasks that the build system considers
up to date.

By default, the function runprocess performs an incremental build:

runprocess()

If you use a pull request workflow, incremental builds are helpful for efficiently prequalifying changes
before merging with the main repository.

Run Full Builds for Qualifying Software
Outside of the normal build schedule, you should run a full (non-incremental) build at least one time
per week and anytime you are qualifying software for a release. When you run a full build, the build
system force runs each of the tasks in the pipeline. The full build makes sure that each task in the
pipeline executes and that the output artifacts reflect the latest changes.

To run a full build, use the function runprocess with the argument Force specified as True:

runprocess(Force=true)

The Force argument forces tasks in the pipeline to execute, even if the tasks already have up to date
results.

For more information, see “Incremental Builds” on page 3-19 and runprocess.

Cache Models and Other Artifacts Used During Build
If you select the setting Enable model caching, the build system can cache your models and several
other artifacts. The cache allows the build system to avoid reloading the same artifacts multiple times
within a build.

The artifacts that the build system can cache include:

• Simulink models
• Simulink libraries, subsystem references, and data dictionaries
• Test files, results, and harnesses (internally saved and externally saved) from Simulink Test
• Requirements files and requirement sets from Requirements Toolbox™
• System Composer architecture models

You can control the size of the cache by using the padv.ProjectSettings properties
MaxNumModelsInCache and MaxNumTestResultsInCache. The built-in tasks use the utility
function padv.util.closeModelsLoadedByTask to close models loaded by the task. For more
information, see padv.ProjectSettings and padv.util.closeModelsLoadedByTask.

5 Integrate into CI Systems

5-30

If you have custom tasks, you can improve the efficiency of model loading in your builds by closing
the models loaded by a task by using the function padv.util.closeModelsLoadedByTask inside
your custom tasks.

For example:

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 % unique identifier for task
 options.Name = "MyCustomTask";
 % artifacts the task iterates over
 options.IterationQuery = "padv.builtin.query.FindModels";
 % input artifacts for the task
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % where the task outputs artifacts
 options.OutputDirectory = fullfile(...
 '$DEFAULTOUTPUTDIR$','my_custom_task_results');
 end
 % Calling constructor of superclass padv.Task
 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries);
 obj.OutputDirectory = options.OutputDirectory;
 end
 function taskResult = run(obj,input)
 % Before the task loads models, save a list of the models that are already loaded.
 loadedModels = get_param(Simulink.allBlockDiagrams(), 'Name');

 % identify model name
 % "input" is a cell array of input artifacts
 % First input query gets iteration artifact (a model)
 model = input{1}; % get padv.Artifact from first input query
 modelName = padv.util.getModelName(model);

 % Example task that loads model and displays information
 load_system(modelName);
 disp(modelName);
 disp('Data Dictionaries:')
 disp(Simulink.data.dictionary.getOpenDictionaryPaths)

 % specify results from task using padv.TaskResult
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 % taskResult.Status = padv.TaskStatus.Fail;
 % taskResult.Status = padv.TaskStatus.Error;

 % Close models that were loaded by this task.
 padv.util.closeModelsLoadedByTask(...
 PreviouslyLoadedModels=loadedModels)
 end
 end
end

 Best Practices for Effective Builds

5-31

Version History

• “July 2024” on page 6-2
• “June 2024” on page 6-4
• “May 2024” on page 6-7
• “April 2024” on page 6-10
• “March 2024” on page 6-11
• “February 2024” on page 6-17
• “December 2023” on page 6-20
• “November 2023” on page 6-22
• “October 2023” on page 6-24
• “September 2023” on page 6-26
• “August 2023” on page 6-28
• “July 2023” on page 6-29
• “June 2023” on page 6-30
• “April 2023” on page 6-33
• “March 2023” on page 6-36
• “February 2023” on page 6-37
• “December 2022” on page 6-38
• “November 2022” on page 6-39
• “October 2022” on page 6-40
• “September 2022” on page 6-41
• “August 2022” on page 6-42

6

July 2024
Supported releases:

• R2024a
• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features
• You can now dry-run tasks to quickly validate your task inputs and generate representative task

outputs without actually running the task action. To perform a dry-run, you can use the DryRun
argument of the runprocess function. For example:

runprocess(DryRun = true)

To automatically check out the licenses associated with the tasks, you can specify:

runprocess(DryRun = true, DryRunLicenseCheckout = true)

Dry-runs can be helpful for quickly testing out your CI pipeline and making sure that your
required products and licenses are available, locally and on your CI agents. The built-in tasks now
have a dryRun method that generates representative task outputs for each task. You can define
your own custom dry-run functionality by overriding the dryRun method for class-based tasks or
specifying the task property DryRunAction for function-based tasks.

Compatibility Considerations
Previously, in your pipeline generator options object, you specified runprocess arguments by using
these properties:

• ForceRunAllTasks
• ExitInBatchMode
• RerunFailedTasks
• RerunErroredTasks
• GenerateJUnitForProcess

These properties will be removed from the pipeline generator options objects in a future release. Use
the new property RunprocessCommandOptions instead.

Object Previous Properties New Property
padv.pipeline.GitHubOptions • ForceRunAllTasks

• ExitInBatchMode
• RerunFailedTasks
• RerunErroredTasks
• GenerateJUnitForProcess

RunprocessCommandOptions
padv.pipeline.GitLabOptions
padv.pipeline.JenkinsOptions

(continues on next page)

6 Version History

6-2

Instead of specifying runprocess arguments directly in your pipeline generator options object:

1 Create a padv.pipeline.RunProcessOptions object.
2 Set the properties of the object.
3 Use the object to specify the property RunprocessCommandOptions for your pipeline generator

options object.

This example shows how to create a GitHub pipeline generator options object that specifies certain
runprocess arguments using the recommended functionality.

Functionality Use This Instead
padv.pipeline.GitHubOptions(...
ForceRunAllTasks = false,...
ExitInBatchMode = false,...
RerunFailedTasks = false,...
RerunErroredTasks = false,...
GenerateJUnitForProcess = false);

op = padv.pipeline.RunProcessOptions;
op.Force = false;
op.ExitInBatchMode = false;
op.RerunFailedTasks = false;
op.RerunErroredTasks = false;
op.GenerateJUnitForProcess = false;

padv.pipeline.GitHubOptions(...
RunprocessCommandOptions = op)

 July 2024

6-3

June 2024
Supported releases:

• R2024a
• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features
• You can collect model design and testing metrics for the units and components in your project by

using the new built-in task padv.builtin.task.CollectMetrics. These metrics correspond
to the metrics in the Model Maintainability Dashboard and Model Testing Dashboard.

You can add tasks for collecting different metrics by using addTask and configuring the tasks
inside your process model. By default, the CollectMetrics collects metrics for the Model
Maintainability Dashboard, but you can reconfigure the task to collect model testing and code
testing metrics by changing the iteration query and specifying the Dashboard property.

 %% Collect Model Maintainability Metrics
 mmMetricTask = pm.addTask(padv.builtin.task.CollectMetrics());

 %% Collect Model Testing Metrics
 mtMetricTask = pm.addTask(padv.builtin.task.CollectMetrics(...
 Name="ModelTestingMetrics",...
 IterationQuery=padv.builtin.query.FindUnits));
 mtMetricTask.Title = "Collect Model Testing Metrics";
 mtMetricTask.Dashboard = "ModelUnitTesting";
 mtMetricTask.ReportName = "$ITERATIONARTIFACT$_ModelTesting";

 %% Collect SIL Code Testing Metrics
 stMetricTask = pm.addTask(padv.builtin.task.CollectMetrics(...
 Name="SILTestingMetrics",...
 IterationQuery=padv.builtin.query.FindUnits));
 stMetricTask.Title = "Collect SIL Code Testing Metrics";
 stMetricTask.Dashboard = "ModelUnitSILTesting";
 stMetricTask.ReportName = "$ITERATIONARTIFACT$_SILTesting";

 %% Collect PIL Code Testing Metrics
 ptMetricTask = pm.addTask(padv.builtin.task.CollectMetrics(...
 Name="PILTestingMetrics",...
 IterationQuery=padv.builtin.query.FindUnits));
 ptMetricTask.Title = "Collect PIL Code Testing Metrics";
 ptMetricTask.Dashboard = "ModelUnitPILTesting";
 ptMetricTask.ReportName = "$ITERATIONARTIFACT$_PILTesting";

When you point to one of the tasks in Process Advisor, you have the option to launch the
associated dashboard (Model Design Dashboard or Model Testing Dashboard).

For more information, see padv.builtin.task.CollectMetrics,
padv.builtin.query.FindDesignModels, and padv.builtin.query.FindUnits in the
Reference Book PDF.

6 Version History

6-4

• To find models that are associated with test cases that use a specific test case tag, use the new
Tags argument for the built-in query padv.builtin.query.FindModelsWithTestCases.

• Get the absolute path to an artifact by using the new object function getAbsolutePath for
padv.util.ArtifactAddress.

• When you create a new process model with the createprocess function, you can now
automatically set up the default process model template to groups model verification tasks and
code verification tasks into separate subprocesses by specifying the Subprocess as true:

createprocess(Subprocess = true)

When you open Process Advisor, the Tasks column shows the tasks grouped into Model
Verification and Code Verification.

Additionally, if you want to create an instance of the Process Advisor example project that uses
Model Verification and Code Verification subprocesses, you can use the Subprocess
argument. For example:

processAdvisorExampleStart(Subprocess = true)

• You now have the option to open multiple tools from the options menu (...) of a task. To associate
multiple tools with a task, specify the task property LaunchToolAction as a cell array of
function handles and LaunchToolText as a string array. For each tool action that you specify in
LaunchToolAction, you must have corresponding text specified in LaunchToolText. For

 June 2024

6-5

example, to create a custom task that has options for opening the Dependency Analyzer app and
the Clone Detector app:

 t = addTask(pm,'MyCustomTask',...
 Title = "My Custom Task",...
 IterationQuery = padv.builtin.query.FindModels);
 t.LaunchToolAction={@openDependencyAnalyzer,@openCloneDetector};
 t.LaunchToolText=["Open Dependency Analyzer","Open Clone Detector"];

In this case, @openDependencyAnalyzer and @openCloneDetector are handles to custom
functions that open the Dependency Analyzer app and Clone Detector app, respectively.

Compatibility Considerations
• For padv.Artifact, these properties have been removed:

• Address
• UUID
• StorageAddress

To specify or get an artifact address, update your code to use padv.util.ArtifactAddress
and its properties instead. There is no direct replacement for the properties UUID and
StorageAddress.

• For the runprocess function, the EnableTaskLogging argument is now true by default.
Previously, the argument was logical.empty by default. Note that if the project setting
SuppressOutputWhenInteractive is true and MATLAB is not running in batch mode, task
logging is automatically disabled.

6 Version History

6-6

May 2024
Supported releases:

• R2024a
• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features
Manage Different Workflows Using Processes

• Inside your process model, you can now define multiple processes for the different build and
verification workflows, environments, and other situations that your team needs. For example, you
can have one process for your CI pipeline and a separate process for smoke testing with fail-fast
tasks. In Process Advisor, you can select which process you want to use from the Processes
gallery in the toolstrip. APIs like the runprocess function also allow you to specify which
Process to run.

 runprocess(Process = "Fail-Fast")
 processadvisor(modelName,"Fail-Fast")

If you define multiple processes, use the padv.Process methods to add tasks and subprocesses
and to specify the relationships within that process. For more information, see “Manage Different
Build and Verification Workflows Using Processes” on page 4-54.

Performance Optimizations

• Process Advisor now runs performance checks on your process model and generates a warning if
tasks in the process model use multiple instances of the same iteration query. You can improve
Process Advisor load times by sharing query instances across your process model. For example, if
multiple tasks in the process model use the same iteration query, you can update your code to
share a single query object instance across these tasks.

 May 2024

6-7

Before

taskA = pm.addTask("taskA",...
 IterationQuery = padv.builtin.query.FindModels);
taskB = pm.addTask("taskB",...
 IterationQuery = padv.builtin.query.FindModels);

After
sharedModelsQuery = padv.builtin.query.FindModels(...
 Name="SharedModelsQuery");
taskA = pm.addTask("taskA",...
 IterationQuery = sharedModelsQuery);
taskB = pm.addTask("taskB",...
 IterationQuery = sharedModelsQuery);

For more information on how to improve performance, see “Best Practices for Process Model
Authoring” on page 4-64. If you want to suppress performance warnings, specify the
padv.ProcessModel property EnablePerformanceChecks as false inside your process
model.

• Additionally, a query can use the results of another query by specifying that query as a parent. The
query can use the parent query to find an initial set of iteration artifacts. You can use the Parent
name-value argument for these built-in queries:

• padv.builtin.query.FindCodeForModel
• padv.builtin.query.FindMAJustificationFileForModel
• padv.builtin.query.FindModelsWithTestCases
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel

Warnings for Best Practices

• By default, the build system now generates a warning for untracked I/O files. If you make a
change to an untracked input or output file, Process Advisor and the build system do not mark the
task as outdated. Make sure that task inputs or outputs that appear as Untracked do not need
to be tracked to maintain the task status and result information that you need for your project.

In Process Advisor, the I/O column shows a warning icon for tasks that have untracked inputs
or outputs. To change this behavior, you can specify the project setting Untracked dependency
behavior as either:

• "Allow" — Do not generate warnings or errors for untracked I/O files.
• "Warn" — Generate a warning if a task has untracked I/O files. In Process Advisor, the I/O

column shows a warning icon .
• "Error" — Generate an error if a task has untracked I/O files.

For more information, see “Specify Settings for Process Advisor and Build System” on page 3-16.

• You can instruct the build system to detect when there are multiple process model files on the
project path. For more information, see the property DetectMultipleProcessModels for

6 Version History

6-8

padv.ProjectSettings in the Reference Book PDF. To avoid unexpected behavior, make sure
only one processmodel file is on the project path.

Built-In Query Enhancements

• Find artifacts where the path matches a regular expression pattern by using the new
IncludePathRegex and ExcludePathRegex name-value arguments for these built-in queries:

• padv.builtin.query.FindArtifacts
• padv.builtin.query.FindExternalCodeCache
• padv.builtin.query.FindFilesWithLabel
• padv.builtin.query.FindModels
• padv.builtin.query.FindModelsWithLabel
• padv.builtin.query.FindRequirements

For example, to find artifacts that start with DD_ and have an .sldd file extension:

q = padv.builtin.query.FindArtifacts(...
IncludePathRegex = "DD_.*\.sldd");
run(q)

• The built-in query padv.builtin.query.FindArtifacts and its subclasses now support
Windows®-style path separators (\) in the paths for IncludePath and ExcludePath. Previously,
the query expected UNIX®-style separators (/).

 May 2024

6-9

April 2024
Supported releases:

• R2024a

Features:

• The support package now supports R2024a.

6 Version History

6-10

March 2024
Supported releases:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)

The March 2024 update also makes all features from the February 2024 update available to R2022b,
R2023a, and R2023b. See "February 2024" below.

Features
Parallel Code Generation, Integration, and Automation

• Starting in R2023b Update 5, the pipeline generator supports a round-trip, parallel CI workflow
that automatically merges the task statuses and project analysis from across the parallel
branches. Previously, the parallel pipeline architecture IndependentModelPipeline generated
separate artifact database files, artifacts.dmr, for each parallel branch. The pipeline generator
uses utility functions to save and merge the artifact database files from parallel branches into a
single artifacts.dmr file. When you download your CI artifacts onto your machine, you can use
the merged artifacts.dmr file in your project to see up-to-date task statuses locally in Process
Advisor. For information and considerations for parallel code generation, see “Parallel Pipeline
Architectures” on page 5-23.

• If you use Git submodules to organize your projects, the pipeline generator,
padv.pipeline.generatePipeline, now supports automatic fetching of Git submodules for
GitHub and GitLab. For more information, see either “Integrate into GitHub” on page 5-5 or
“Integrate into GitLab” on page 5-7.

• Previously, if you wanted to create a Docker image that installed the support package, you needed
to download and use the offline installer files. You can now build a Docker image that directly
installs the support package and other products using the MATLAB Package Manager (MPM). For
information and the updated example Dockerfile, see “Create Docker Container for Support
Package” on page 5-28.

Process Advisor Enhancements

• Previously, you used padv.Preferences to manage both project and run-time settings. Now, you
can specify these settings by using the new classes padv.ProjectSettings and
padv.UserSettings, respectively. These classes allow you to programmatically control the
settings for incremental builds, build system logging, and other behaviors.

Additionally, you no longer need to create a project startup script to persist run-time settings. The
padv.UserSettings class automatically manages and persists those settings across MATLAB
sessions on your machine.

The main class properties correspond to settings in the Process Advisor Settings dialog box.

 March 2024

6-11

The class padv.Preferences will be removed in a future release. For project settings, use
padv.ProjectSettings instead. For run-time settings, use padv.UserSettings instead.

• To view the source code or edit the class definition for a task, you can now point to the task, click
the ellipsis (...), and then click Edit Task.

For information on how to reconfigure the built-in tasks or create custom tasks, see “Reconfigure
Built-In Tasks” on page 4-17 and “Create Custom Tasks” on page 4-32.

• By default, Process Advisor no longer shows file extensions for task iteration artifacts shown in the
Tasks column. Previously, you needed to create a custom query if you wanted to remove the file
extensions from artifact names in Process Advisor.

6 Version History

6-12

By default, queries now strip file extensions from the Alias property of each task iteration
artifact. To show file extensions for all artifacts in the Tasks column, select the project setting
Show file extensions. To keep file extensions in the results for a specific query, specify the query
property ShowFileExtension as true.

Build System Enhancements

• You can now use files outside your project as inputs to a task. For example, if you have a shared
Model Advisor configuration file, SHARED_MA_CONFIG.json, that is outside your project, you can
add the file as an input to the Check Modeling Standards task.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=which('SHARED_MA_CONFIG.json')));

In the Process Advisor I/O column, the file appears as Untracked because you cannot track
changes to files outside the project. If you make a change to an untracked file, the build system
does not mark the task as outdated. For more information, see “Turn Off Change Tracking for
Input Artifacts” on page 4-24.

• If you do not want the build system to mark a task as outdated when you make changes to task
outputs, you can now turn off change tracking for those task outputs. In your process model,
specify the task property TrackOutputs as false.

 March 2024

6-13

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.TrackOutputs = false;

In the Process Advisor I/O column, the outputs appear as Untracked. If you make a change to an
untracked file, the build system does not mark the task as outdated. For more information, see
“Turn Off Change Tracking for Task Outputs” on page 4-25.

• The build system can now cache requirement sets. For information on caching, see “Cache Models
and Other Artifacts Used During Build” on page 5-30.

• You can suppress command-line output from tasks by specifying the new runprocess argument
EnableTaskLogging as false. By default, the runprocess function only suppresses command-
line output from tasks if the project setting SuppressOutputWhenInteractive is true and
MATLAB is not running in batch mode.

• If you want to override the project setting SuppressOutputWhenInteractive when you use the
function runprocess during interactive MATLAB sessions, you can use the runprocess
argument SuppressOutputWhenInteractive. For information, see "runprocess" in the
Reference Book PDF.

Built-In Tasks and Queries

• The built-in task padv.builtin.task.AnalyzeModelCode has been enhanced to:

6 Version History

6-14

• Prevent the task from dirtying the model when you specify a Polyspace configuration options in
the process model.

• Check if MATLAB is already connected to a Polyspace server before calling
polyspaceJobsManager.

• Allow you to override the Polyspace configuration options with two new task properties:

• Batch — Option to run analysis on server (-batch)
• Scheduler — Specify cluster or job scheduler (-scheduler)

For information, see "padv.builtin.task.AnalyzeModelCode" in the Reference Book PDF.

• You can use the built-in query padv.builtin.query.FindCodeForModel to find the generated
code files and buildInfo.mat for a model. If you have your code generation tasks and code
analysis tasks in different subprocesses, this query can be helpful for passing your generated code
other subprocesses. For more information and an example, see the documentation for the built-in
query padv.builtin.query.FindCodeForModel in the Reference Book PDF.

• The following built-in tasks override the model configuration parameter LaunchReport to
suppress code generation reports from appearing during task execution:

• padv.builtin.task.GenerateCode
• padv.builtin.task.RunTestsPerModel
• padv.builtin.task.RunTestsPerTestCase

Utility Functions

• If you want to manually refresh the process model data, you can use the new utility function
padv.util.refreshProcessModel. For information, see padv.util.refreshProcessModel
in the Reference Book PDF.

• If you need to get a list of the project references for the current project for a custom task or query,
consider using the new utility function padv.util.getProjectReferences. This function gets
a list of the project references for the current project and caches the list. For information, see
padv.util.getProjectReferences in the Reference Book PDF.

Compatibility Considerations
• The class padv.Preferences will be removed in a future release. Update your code to replace

instances of padv.Preferences with either padv.UserSettings.get() or
padv.ProjectSettings.get(), depending on which property you need to access.

padv.Preferences Property Update
DetectDuplicateOutputs Replace instances of padv.Preferences

with padv.UserSettings.get().GarbageCollectTaskOutputs
ShowDetailedErrorMessages
TrackProcessModel

 March 2024

6-15

padv.Preferences Property Update
FilteredDigitalThreadMessages Replace instances of padv.Preferences

with padv.ProjectSettings.get().IncrementalBuild
EnableModelCaching
MaxNumModelsInCache
MaxNumTestResultsInCache
SuppressOutputWhenInteractive

For example:

Functionality Use This Instead
% changing run-time setting
p1 = padv.Preferences;
p1.DetectDuplicateOutputs = false;

p1 = padv.UserSettings.get();
p1.DetectDuplicateOutputs = false;

% changing project setting
p1 = padv.Preferences;
p1.IncrementalBuild = false;

p1 = padv.ProjectSettings.get();
p1.IncrementalBuild = false;

• By default, Process Advisor no longer shows file extensions for artifacts shown in the Tasks
column. To show file extensions for all artifacts in the Tasks column, select the project setting
Show file extension. To keep file extensions in the results for a specific query, specify the query
property ShowFileExtension as true.

6 Version History

6-16

February 2024
February 2024 was released for R2022a Update 4 (and later updates).1

Features
Model and Simulation Management

• Starting in R2023a, you can use your Model Advisor justifications when checking modeling
standards. Provide your justification files as inputs to the task by using the new built-in query
padv.builtin.query.FindMAJustificationFileForModel to find the justification files in a
specified folder. For example:

 maTask = addTask(pm,padv.builtin.task.RunModelStandards);
 maTask.addInputQueries(...
 padv.builtin.query.FindMAJustificationFileForModel(...
 JustificationFolder=fullfile("Justifications","ModelAdvisor")));

See padv.builtin.query.FindMAJustificationFileForModel in the Reference Book PDF.
• Starting in R2023a, you can run tests in different simulation modes by specifying the

SimulationMode property for the built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase. The property allows you to override the test
simulation mode without having to change the test definition. For an example, see "Create
Multiple Instances of Tasks".

• The property DefaultOutputDirectory for padv.ProcessModel now supports paths relative
to the project root.

Process Advisor Enhancements

• You can now specify padv.Preferences by using the new Settings user interface in the Process
Advisor. See "Specify Settings for Builds".

(continues on next page)
• You can now customize how artifact names appear in Process Advisor by using the new Alias

property of padv.Artifact objects. For an example, see “Hide File Extension in Process
Advisor” on page 4-45.

1 The February release is the last planned release for R2022a.

 February 2024

6-17

• You can suppress command-line output from Process Advisor during interactive MATLAB sessions
by selecting Suppress outputs to command window in the Settings dialog box. For information,
see “Specify Settings for Process Advisor and Build System” on page 3-16.

Build System Enhancements

• The build system can now run tasks from any working directory. Previously, you needed to be
within the project root folder to run tasks.

• Previously during a build, the build system only cached models. Now, when you select the Enable
model caching setting, the build system can cache models and several other artifacts, including
test results, requirements files, and System Composer architecture models. You can control the
size of the cache by using the new padv.Preferences preferences MaxNumModelsInCache and
MaxNumTestResultsInCache. The built-in tasks now use the new utility function
padv.util.closeModelsLoadedByTask to close models loaded by the task. For information,
see “Cache Models and Other Artifacts Used During Build” on page 5-30.

Utility Function for Custom Tasks and Queries

If you need to get the current project instance for a custom task or query, consider using the new
utility function padv.util.getCurrentProject. This function can be faster than the
currentProject function because it creates a persistent variable for the current project instance.
For information, see padv.util.getCurrentProject in the Reference Book PDF.

Compatibility Considerations
• Supported Releases

• The February release is the last planned release for R2022a.

In March 2024, the support package will support:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)

(continues on next page)
• Process Advisor

• In Process Advisor, the Incremental Build check box is now in the Settings dialog box. In the
toolstrip, click Settings to access the Incremental build setting. For information, see
"Specify Settings for Builds".

6 Version History

6-18

• Build System

• The Enable model caching setting (EnableModelCaching property in padv.Preferences)
is now off by default.

• Built-In Tasks

• The built-in task padv.builtin.task.RunModelStandards no longer supports generating
reports as PDF files. If you specified the task property ReportFormat as "pdf", you must
update your code to specify the report format as "html" or "docx" instead.

• For the built-in task padv.builtin.task.GenerateCode, the property
IncludeModelReferenceSimulationTargets has been removed and is no longer
supported. Update your code to remove references to
IncludeModelReferenceSimulationTargets.

• Artifact Handling

• The object function getAlias has been removed from padv.Artifact. To get the human-
readable name for an artifact, use the Alias property instead.

• The methods padv.Task.load_model and padv.Task.close_model have been removed
and the padv.Task.load_model functionality is no longer supported. If you used
padv.Task.load_model and padv.Task.close_model inside your custom tasks, update
your code to use a function like load_system to load your model and use the new utility
function padv.util.closeModelsLoadedByTask to close the models loaded by a task. For
information, see padv.util.closeModelsLoadedByTask in the Reference Book PDF.

 February 2024

6-19

December 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Starting in R2023b Update 5, you can merge artifacts.dmr files from different branches or CI
jobs to make sure task statuses are up-to-date with the latest project analysis.

• Save a copy of an artifact database file using the function
padv.util.saveArtifactDatabase:

padv.util.saveArtifactDatabase(fullfile("derived","base.dmr"))

• Merge artifact database files using the function padv.util.mergeArtifactDatabases:

padv.util.mergeArtifactDatabases(...
Base = fullfile("derived","base.dmr"),...
Branches = [fullfile("derived","featureA.dmr"), fullfile("derived","featureB.dmr")],...
Merged = fullfile("derived","artifacts.dmr"))

The merged artifacts.dmr file contains the updates from the specified branches.
• You can improve the efficiency of model loading in your builds by using the methods

padv.Task.load_model and padv.Task.close_model inside your custom tasks. These
methods allow the build system to cache a model, instead of reloading the same model multiple
times within a build. For information, see "Best Practices for Effective Builds".

• The built-in task padv.builtin.task.MergeTestResults can generate code coverage reports
for tests that you execute in software-in-the-loop (SIL) mode and processor-in-the-loop (PIL) mode.
The report names are specified by the new task properties CovReportNameSIL and
CovReportNamePIL. For more information, see the documentation for the built-in task
padv.builtin.task.MergeTestResults in the Reference Book PDF.

• Programmatically get task results from specific tasks, subprocesses, and artifacts by using the
name-value arguments for the function getProcessTaskResults. For example, to get the task
results from running the task padv.builtin.task.RunModelStandards on the artifact
myModel.slx:

[IDsWithResults,results,outdated] = getProcessTaskResults(...
Tasks = "padv.builtin.task.RunModelStandards",...
FilterArtifact = fullfile("models","myModel.slx"))

For information, see "getProcessTaskResults" in the Reference Book PDF.

• You can get the outputs from a specific task by using the Task argument for the built-in query
padv.builtin.query.GetOutputsOfDependentTask. You can also specify a unique query
name using the Name argument. For example:

6 Version History

6-20

padv.builtin.query.GetOutputsOfDependentTask(...
Task="padv.builtin.task.GenerateCode",...
Name = "CustomNameForQuery")

For information, see "padv.builtin.query.GetOutputsOfDependentTask" in the Reference Book PDF.

• When you use the pipeline generator, you no longer need to specify the OutputDirectory
property for custom tasks. If your custom task generates outputs without a specified output
directory, the build system automatically stores the task outputs in the
DefaultOutputDirectory specified in the process model.

• If you want to filter out certain types of issues shown in the Project Analysis Issues pane, you
can use the FilteredDigitalThreadMessages in your padv.Preferences. For information,
see padv.Preferences in the Reference Book PDF.

(continues on next page)

Compatibility Considerations
• Built-in tasks now use the methods padv.Task.load_model and padv.Task.close_model to

improve the efficiency builds by caching models. If you do not want tasks to cache models, specify
the EnableModelCaching property in your padv.Preferences as false.

 December 2023

6-21

November 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Check for run-time errors in every operation in your code by configuring the built-in task
padv.builtin.task.AnalyzeModelCode to use Polyspace Code Prover.

When you specify the task property VerificationMode as "CodeProver", the task uses
Polyspace Code Prover to prove code quality.

You can use both Bug Finder and Code Prover in your software development workflow. To include
both a Bug Finder task and a Code Prover task in your process model, add two separate instances
of the built-in task padv.builtin.task.AnalyzeModelCode to your process. For example:

%% Check Coding Standards with Polyspace Bug Finder
psbfTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
% Report Options
psbfTask.ResultDir = fullfile(defaultResultPath,'bug_finder');
psbfTask.ReportPath = fullfile(defaultResultPath,'bug_finder');

%% Prove Code Quality with Polyspace Code Prover
pscpTask = pm.addTask(padv.builtin.task.AnalyzeModelCode(Name="ProveCodeQuality"));
pscpTask.Title = "Prove Code Quality";
pscpTask.VerificationMode = "CodeProver";
% Report Options
pscpTask.ResultDir = string(fullfile(defaultResultPath,'code_prover'));
pscpTask.Reports = ["Developer", "CallHierarchy", "VariableAccess"];
pscpTask.ReportPath = string(fullfile(defaultResultPath,'code_prover'));
pscpTask.ReportNames = [...
 "$ITERATIONARTIFACT$_Developer", ...
 "$ITERATIONARTIFACT$_CallHierarchy", ...
 "$ITERATIONARTIFACT$_VariableAccess"];

For more information, see the documentation for the built-in task
padv.builtin.task.AnalyzeModelCode in the Reference Book PDF.

• Find multiple files with the built-in query padv.builtin.query.FindFileWithAddress by
specifying the artifact type and file path name-value arguments as vectors of the same length.

padv.builtin.query.FindFileWithAddress(...
Type=[artifactType1, artifactType2],...
Path=[filePath1, filePath2])

For more information, see the documentation for the built-in query
padv.builtin.query.FindFileWithAddress in the Reference Book PDF.

(continues on next page)

6 Version History

6-22

• By default, the build system now generates an error if multiple tasks attempt to write to the same
output file. If you want to turn this setting off, you can specify DetectDuplicateOutputs as
false in padv.Preferences.

• The built-in query padv.builtin.query.FindTestCasesForModel can now also find test
cases associated with subsystem references. A subsystem reference allows you to save the
contents of a subsystem in a separate file and reference it using a Subsystem Reference block.
Previously, the query found only the test cases directly associated with the Simulink or System
Composer model itself.

Fixes:

• A syntax issue has been fixed in the example pipeline configuration file for GitLab. You can open
the updated example by entering processAdvisorGitLabExampleStart in the MATLAB
Command Window.

Compatibility Considerations
• In a future release, the built-in query padv.builtin.query.FindFileWithAddress will no

longer accept positional arguments. Update your code to use name-value arguments instead.

Functionality Use This Instead
padv.builtin.query.FindFileWithAddress(...
"artifactType",...
"filePath")

padv.builtin.query.FindFileWithAddress(...
Type = "artifactType",...
Path = "filePath")

 November 2023

6-23

October 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features

• You can compare models to their ancestors in Git and generate a model comparison report directly
from Process Advisor with the built-in task padv.builtin.task.GenerateModelComparison.

To add the task to your process model, use the function addTask:

mdlCompTask = addTask(pm, padv.builtin.task.GenerateModelComparison());

You can use the task properties to specify different report options, filtering options, and the name
of the Git branch used for the comparison. For example:

mdlCompTask.ReportFormat = "DOCX";
mdlCompTask.MainBranch = "branchname";

In Process Advisor, when you point to the task and click ... > Compare to Ancestor, you can
open the Model Comparison tool.

For more information, see the documentation for the built-in task
padv.builtin.task.GenerateModelComparison in the Reference Book PDF.

(continues on next page)

6 Version History

6-24

Note If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker containers), you should set up a virtual display server
before you include this task in your process model. For information, see “Set Up Virtual Display
Machines Without Displays” on page 5-26.

• By default, the built-in query padv.builtin.query.FindFileWithAddress validates that the
file exists before returning the file from the query. The name-value argument
ValidateFileExistence is now true by default.

 October 2023

6-25

September 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features

• Manually generate a pipeline configuration file for GitHub by passing a
padv.pipeline.GitHubOptions object to the function padv.pipeline.generatePipeline.
For information, see “Integrate into GitHub” on page 5-5.

• Group related tasks, create a hierarchy of tasks, and share parts of a process using subprocesses.
A subprocess is a self-contained sequence of tasks, inside a process or other subprocess, that can
run standalone. For information, see "Group Tasks Using Subprocesses".

• Programmatically run tasks, subprocesses, and tasks for specific artifacts by using the updated
name-value arguments for the runprocess function:

• Tasks — Specify the names of the tasks that you want to run.

runprocess(...
Tasks = ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"])

• Subprocesses — Specify the name of the subprocess that you want to run.

runprocess(Subprocesses = "SubprocessA")

• FilterArtifact — Specify the artifact that you want to run tasks on.

runprocess(...
FilterArtifact = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

You can use one or more of these name-value arguments to specify what you want to run. You can
also use these name-value arguments with the function generateProcessTasks. For more
information, see runprocess and generateProcessTasks in the Reference Book PDF.

(continues on next page)

6 Version History

6-26

• You can reconfigure the Check Coding Standards task
(padv.builtin.task.AnalyzeModelCode) to automatically upload Bug Finder analysis results
to Polyspace Access.

Use the new Polyspace Access properties of the task to provide your configuration options and
credentials. For example, for a process model with a Polyspace task object psTask:

% Polyspace Access configuration options
psTask.PsAccessEnable = true;
psTask.PsAccessHostName = "my-polyspace-access";
psTask.PsAccessPortNumber = "9443";
psTask.PsAccessProtocol = "https";
psTask.PsAccessCredentialsFile = "C:\Users\username\myCredentials.txt";
psTask.PsAccessParentFolder = "public/myProject";
psTask.PsAccessResultsName = "$ITERATIONARTIFACT$_CodingStandards";

For more information, see the documentation for the built-in task
padv.builtin.task.AnalyzeModelCode in the Reference Book PDF.

• By default, a query can find files under the project root folder, even if you did not add that file to
the project. To only return artifacts that you added to the project, you can now specify the
InProject argument for the query as true.

For example, to have the Check Modeling Standards task, maTask, only run for models that you
added to the project, specify the iteration query as padv.builtin.query.FindModels and
specify the argument InProject as true.

maTask = pm.addTask(padv.builtin.task.RunModelStandards());
maTask.IterationQuery = padv.builtin.query.FindModels(...
 InProject = true);

The InProject argument is available for the built-in queries FindArtifacts,
FindFilesWithLabel, FindModels, FindModelsWithLabel, and FindRequirements.

• When you open a test case from the Tasks column, Process Advisor automatically loads the test
case results in Test Manager.

 September 2023

6-27

August 2023
Supports:

• R2023b
• R2023a
• R2022b Update 1 (and later updates)

Features

• With the pipeline generator, you can run tasks on your models in parallel by using the pipeline
architecture, padv.pipeline.Architecture.IndependentModelPipelines. Downstream,
parallel pipelines independently run the tasks associated with each model. For more information,
see "Integrate into CI".

Fixes

• Previously, if you set the properties of a query instance in the process model, all tasks that used
that query instance were affected, unless you specified a unique name for the query instance.
Now, you no longer need to specify a unique name for the query instance to set different values for
different tasks. For example, you can have two tasks, TaskA and TaskB, that set different
properties for instances of the built-in query padv.builtin.query.FindModels.

% Task A only runs on the model "A.slx"
taskA = addTask(pm,"TaskA");
taskA.IterationQuery = padv.builtin.query.FindModels;
taskA.IterationQuery.IncludePath = "A.slx";

% Task B only runs on the model "B.slx"
taskB = addTask(pm,"TaskB");
taskB.IterationQuery = padv.builtin.query.FindModels;
taskB.IterationQuery.IncludePath = "B.slx";

If you want to share a query across multiple tasks, specify a unique name for the query and use
the addQuery function to add the query to the process model.

• The build system no longer returns a warning or exception when attempting to load results
generated by a previous version of the support package.

Compatibility Considerations
• You must specify the Name property for a query instance before you use the addQuery function in

the process model.

6 Version History

6-28

July 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Fixes

• Removed unsupported call to padv.utils.isMACacheUpdated in the built-in task
padv.builtin.task.RunModelStandards (Check Modeling Standards).

Features:

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase support test cases that run test iterations in fast
restart.

• The built-in task padv.builtin.task.MergeTestResults has a new property
LoadSimulationSignalData. If you specify LoadSimulationSignalData as true, the task
loads simulation signal data when loading the test results.

 July 2023

6-29

June 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Artifacts

• There are new utility functions for working with artifacts. For information, enter:

help padv.util
• You can use the utility functions when working with artifacts and artifact addresses. For

example, you can use padv.util.ArtifactAddress to specify the address of a
padv.Artifact:

model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

• Build System

• You can automatically generate a build report after running tasks with runprocess:

runprocess(GenerateReport = true)

For information on how to specify a different report name and format, see "Generate Build
Report".

• Process Advisor and the build system support a P-coded process model file processmodel.p.
If you have both a P-code file and a .m file, the P-code file takes precedence over the
corresponding .m file for execution, even after modifications to the .m file.

• Built-In Tasks and Queries

• You can use the Tags argument of the built-in query
padv.builtin.query.FindTestCasesForModel to find test cases that use specific tags.

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase now use the MATLAB test runner,
matlab.unittest.TestRunner, to run tests and generate JUnit-style XML reports in CI.

• Pipeline Generation

• The pipeline generator now allows you to specify if and when you want to collect artifacts for
your pipeline. In padv.pipeline.GitLabOptions or padv.pipeline.JenkinsOptions,
you can specify the property EnableArtifactCollection as:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the job succeeds
• "on_failure" — Only collect artifacts when the job fails
• "always", 1, or true — Always collect artifacts

(continues on next page)

6 Version History

6-30

• The pipeline generator now allows you to control whether a pipeline stops or continues
running after a stage fails. In padv.pipeline.GitLabOptions or
padv.pipeline.JenkinsOptions, you can specify the property StopOnStageFailure as
either true or false. By default, the pipeline does not stop if a stage in the pipeline fails.

• The pipeline generator automatically generates a Process Advisor build report before
collecting build artifacts. The report generates in a new job, Generate_PADV_Report. For
more information, see “How Automatic Pipeline Generation Works” on page 5-19.

Compatibility Considerations
• Artifacts

• padv.Artifact no longer returns the properties Address, UUID, Label, and
StorageAddress. padv.Artifact now returns an ArtifactAddress property instead:

a =

 Artifact with properties:

 Type: "artifact_type"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]

For information, see the documentation for the utility function
padv.util.ArtifactAddress in the Reference Book PDF.

• Queries

• The Name property for padv.Query objects is now immutable. You cannot change the value of
the Name property after the query object is created. If you want to set a property value for a
padv.Query object, set the value by using the name-value arguments in the constructor.

• Built-In Tasks and Queries

• The CovReportPath property was removed from the built-in task
padv.builtin.task.MergeTestResults. The coverage and test reports automatically
generate into the folder location specified by ReportPath.

• The Tags property was removed from the built-in task
padv.builtin.task.RunTestsPerTestCase. Use Tags argument of query
padv.builtin.query.FindTestCasesForModel to find test cases with specific test tags
instead:

addTask(pm,padv.builtin.task.RunTestsPerTestCase,...
 IterationQuery = padv.builtin.query.FindTestCasesForModel(...
 Tags="FeatureA"));

• The Tags property will be removed from the built-in task
padv.builtin.task.RunTestsPerModel in a future release. Use the Tags argument of
query padv.builtin.query.FindTestCasesForModel instead.

• The GenerateJUnitForTask property was removed from padv.Task. padv.Task now uses
the properties CISupportOutputsForTask and CISupportOutputsByTask to control
whether tasks generate CI aware result files, like JUnit-style XML reports.

• The built-in tasks padv.builtin.task.RunTestsPerModel and
padv.builtin.task.RunTestsPerTestCase no longer support test cases that run test
iterations in fast restart.

 June 2023

6-31

• Pipeline Generation

• The property ArtifactsWhen will be removed from padv.pipeline.GitLabOptions in a
future release. Use the property EnableArtifactCollection to specify when artifacts are
collected instead.

(continues on next page)
• The property SaveArtifactsOnSuccess will be removed from

padv.pipeline.JenkinsOptions in a future release. Use the property
EnableArtifactCollection to specify when artifacts are collected instead.

6 Version History

6-32

April 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The pipeline generator automatically generates JUnit-style XML reports for tasks. The JUnit
reports allow you to see a summary of task results directly in the GitLab or Jenkins user interface.
For information, see “Integrate into GitLab” on page 5-7 or “Integrate into Jenkins” on page 5-10.

• The support package contains an example Dockerfile for creating a Docker container to run
MATLAB with the support package and other MathWorks products. For more information, see
“Create Docker Container for Support Package” on page 5-28.

• padv.ProcessModel has a property DefaultOutputDirectory which controls the
$DEFAULTOUTPUTDIR$ token in the example processmodel.m file. By default, Process Advisor
outputs files inside a PA_Results folder in the project root. For more information, see the
Reference Book PDF.

• You can filter the artifacts returned by built-in queries like
padv.builtin.query.FindCodeFolderForModel by using the properties IncludeLabel,
ExcludeLabel, IncludePath, and ExcludePath.

q = padv.builtin.query.FindRequirements(...
ExcludePath = "HighLevel");
run(q)

• The task padv.builtin.task.MergeTestResults now supports inputs that supply multiple
test results and supports dependencies on multiple predecessor tasks.

Compatibility Considerations
• Previously, several built-in tasks ran on either reference models (Ref) or top models (Top). These

tasks have been combined into a single task that can automatically run on both reference models
and top models:

Previous Built-In Task Name Current Built-In Task Name
padv.builtin.task.AnalyzeRefModelCode padv.builtin.task.AnalyzeModelCode
padv.builtin.task.AnalyzeTopModelCode
padv.builtin.task.GenerateCodeAsRefModel padv.builtin.task.GenerateCode
padv.builtin.task.GenerateCodeAsTopModel
padv.builtin.task.RunCodeInspectionAsRefModel padv.builtin.task.RunCodeInspection
padv.builtin.task.RunCodeInspectionAsTopModel

(continues on next page)

 April 2023

6-33

Update your code to use the current built-in task names or instances.

% Using current built-in task instances
psTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
codegenTask = pm.addTask(padv.builtin.task.GenerateCode());
slciTask = pm.addTask(padv.builtin.task.RunCodeInspection());

If you want the task to only run on either reference models or top models, you can use the
properties of the task (TreatAsRefModel or IsTopModel) to override the default behavior. For
example:

% To override the default behavior

psRefTask = pm.addTask(padv.builtin.task.AnalyzeModelCode(...
 TreatAsRefModel = true,...
 IterationQuery = padv.builtin.query.FindRefModels));

codegenRefMdlTask = pm.addTask(padv.builtin.task.GenerateCode(...
 TreatAsRefModel = true,...
 IterationQuery = padv.builtin.query.FindRefModels));

slciRefTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 IsTopModel = false,...
 IterationQuery = padv.builtin.query.FindRefModels));

If your process model uses multiple instances of a task, like
padv.builtin.task.RunCodeInspection, make sure to specify a unique Name for each
instance of the task.

% Provide unique names

slciTopTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 Name = "inspectCodeTop",...
 Title = "Inspect Code (Top)",...
 IsTopModel = true,...
 IterationQuery = padv.builtin.query.FindTopModels));

slciRefTask = pm.addTask(padv.builtin.task.RunCodeInspection(...
 Name = "inspectCodeRef",...
 Title = "Inspect Code (Ref)",...
 IsTopModel = false,...
 IterationQuery = padv.builtin.query.FindRefModels));

• The options structures, RunOptions and ReportOptions, for built-in tasks will be removed in a
future release. The options structures have been replaced by properties of the built-in tasks. To
reconfigure a built-in task, use the properties of the task instead.

For example:

Previously Now
maTask.RunOptions.ReportPath maTask.ReportPath

You can open the source code for a built-in task to see a mapping of the options structure to the
task properties. For example:

open padv.builtin.task.RunModelStandards

6 Version History

6-34

The getLegacyOptions function shows the mapping. For example:

function options = getLegacyOptions()
options = [...
 "RunOptions.CheckIDList", "CheckIDList" ...
 "RunOptions.DisplayResults", "DisplayResults"...
 "RunOptions.Force", "Force" ...
 "RunOptions.ParallelMode", "ParallelMode" ...
 "RunOptions.TempDir", "TempDir" ...
 "RunOptions.ShowExclusions", "ShowExclusions" ...
 "RunOptions.ExtensiveAnalysis", "ExtensiveAnalysis" ...
 "RunOptions.ReportName", "ReportName" ...
 "RunOptions.ReportFormat", "ReportFormat" ...
 "RunOptions.ReportPath", "ReportPath" ...
];
end

 April 2023

6-35

March 2023
Supports:

• R2023a
• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The support package now supports R2023a.
• Starting in R2023a:

• The support package can analyze artifacts in referenced projects.
• The Project Analysis Issues pane returns warnings for artifacts in the project.

The number of errors and warnings in the project are summarized at the bottom of the Process
Advisor app.

6 Version History

6-36

February 2023
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Automatically generate a pipeline file for a Jenkins pipeline by using the function
padv.pipeline.generatePipeline. For more information, see “Integrate into Jenkins” on
page 5-10.

• The CI options for pipeline generation have two new properties:

• AddBatchStartupOption — Specify whether to open MATLAB using the -batch startup
option

• GeneratedPipelineDirectory — Specify where the generated pipeline file generates
• padv.Task has new properties:

• AlwaysRun — If you specify AlwaysRun as true, the task will always run, even if the task
results are already up to date.

• LaunchToolText — Specify a tooltip for a custom launch action for a task.
• OutputDirectory — Location for standard outputs that the task produces
• CacheDirectory — Location for additional cache files that the task generates

• The built-in query padv.builtin.query.FindArtifacts accepts a cell array of multiple
artifact types for the ArgumentType argument. For example, to find the Simulink models and
MATLAB M files in a project:

q = padv.builtin.query.FindArtifacts(...
ArtifactType={"sl_model_file","m_file"});
run(q)

Fixes:

• In the standalone Process Advisor window, Linux users can point to a task and click the ellipses
(...) without having to use the arrows on the keyboard to interact with the options in the menu.

Compatibility Considerations
• The ArtifactsPath property was removed from padv.pipeline.GitLabOptions and

padv.pipeline.JenkinsOptions. If you previously specified the ArtifactsPath property,
update your code to no longer specify ArtifactsPath. The pipeline generator uses the
OutputDirectory property of the task to automatically identify which artifacts to collect.

 February 2023

6-37

December 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• Automatically generate a pipeline configuration file for a GitLab pipeline by using the new
function padv.pipeline.generatePipeline. For more information, see “Integrate into
GitLab” on page 5-7 or enter:

help padv.pipeline.generatePipeline

• Open the tool associated with a task by pointing to the task in the Process Advisor app and
clicking the ellipsis (...) and then Open Tool Name.

• Automatically view detailed statuses, inputs, outputs, and dependencies for tasks and task results
shown in the Process Advisor app.

• The built-in task Design Error Detection now outputs the Simulink Design Verifier data file as an
output in the I/O column.

• Find artifacts in your project that meet specific search criteria by using the new built-in query
padv.builtin.query.FindArtifacts.

For information, enter:

help padv.builtin.query.FindArtifacts

• Find requirement sets in your project and requirement links to models by using the new built-in
queries padv.builtin.query.FindRequirements and
padv.builtin.query.FindRequirementsForModel, respectively.

6 Version History

6-38

November 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• You can now open artifacts, in their associated tool, directly from the Process Advisor app. In the
Tasks column, point to the name of an artifact and click the hyperlink.

• When there is a new version of the support package available, the Process Advisor app shows an
update icon in the bottom-right corner.

• The built-in task for generating a Simulink Web view now includes additional options like the
ability to include user notes and export models in subfolders. To view the source code for the task,
enter this code in the MATLAB Command Window:

open padv.builtin.task.GenerateSimulinkWebView

Fixes:

• The Process Advisor app respects requests to cancel artifact analysis.
• The task padv.builtin.task.AnalyzeModelCode returns an error if Polyspace Bug Finder is

either not installed or not linked to the current MATLAB installation.

 November 2022

6-39

October 2022
Supports:

• R2022b Update 1 (and later updates)
• R2022a Update 4 (and later updates)

Features:

• The support package now supports R2022b for Update 1 and later updates.
• Turn off incremental builds for a project by clearing the Incremental Build check box in the

Process Advisor app. For more information, see “How to Disable Incremental Builds” on page 3-
19.

• The build system and Process Advisor app take advantage of runsAfter relationships when
determining the task execution order for tasks associated with the project.

6 Version History

6-40

September 2022
Supports:

• R2022a Update 4 (and later updates)

Features:

• You can create a new example project instance that includes an example YAML file for configuring
GitLab pipelines:

processAdvisorGitLabExampleStart

The example YAML file, .gitlab-ci.yml, is in the project root.
• You can create a new example project instance that includes an example Jenkinsfile for
configuring Jenkins pipelines:

processAdvisorJenkinsExampleStart

The example Jenkinsfile, Jenkinsfile, is in the project root.
• Test harnesses are now tracked as dependencies for test cases.
• Externally-saved input or output baselines (including .mat and Excel) are now tracked as

dependencies for test cases.

Fixes:

• If you are using the project window and there is an error, the error dialog is able to open the
artifact listed in the hyperlink.

 September 2022

6-41

August 2022
Initial release.

Supports:

• R2022a Update 4 (and later updates)

6 Version History

6-42

	User's Guide
	Fundamentals
	MBD Pipeline
	Build System
	Process Advisor
	CI/CD System Integration

	Run Tasks with Process Advisor
	Automate and Run Tasks with Process Advisor
	View and Modify Default Process
	Run Tasks and Review Results
	Identify Impact of Changes
	Re-Run Impacted Tasks with Incremental Build
	Generate Build Report
	Explore Other Options

	Programmatically Run Tasks
	Run Tasks in Pipeline
	View Available Tasks in Pipeline
	Generate Build Report

	Specify Settings for Process Advisor and Build System
	Project Settings
	User Settings

	Incremental Builds
	How to Disable Incremental Builds

	Locally Reproduce Issues Found in CI

	Customize Your Process Model
	Modify Default Process Model to Fit Your Process
	Create Process for Project
	Inspect Default Process Model
	Section A — Add or Remove Built-In Tasks
	Section B — Change Behavior of Built-In Tasks
	Section C — Specify Dependencies Between Tasks
	Section D — Specify Preferred Task Execution Order

	Overview of Process Model Customizations
	Create Process Model
	Add Tasks to Process
	Specify Task Relationships
	Find Specific Artifacts Using Queries
	Built-In Tasks
	Custom Tasks
	Built-In Queries
	Custom Queries
	Use Your Process

	Reconfigure Built-In Tasks
	Change Task Behavior
	Change How Often Tasks Run
	Add Inputs to Tasks
	Create Multiple Instances of Tasks
	Turn Off Change Tracking for Input Artifacts
	Turn Off Change Tracking for Task Outputs
	Handling Untracked Dependencies

	Define Task Relationships
	Task Relationships
	Specify Dependencies Between Tasks
	Specify Preferred Task Order

	Create Custom Tasks
	Custom Task that Runs Existing Script
	Custom Task for Specialized Functionality
	Example Custom Tasks

	Find Artifacts by Creating Custom Queries
	Choose Superclass for Custom Query
	Define and Use Custom Query in Process
	Example Custom Queries
	Hide File Extension in Process Advisor
	Sort Artifacts in Specific Order

	Test Tasks and Queries
	Group Tasks Using Subprocesses
	Subprocess Boundaries
	Handling Invalid Dependencies

	Manage Different Build and Verification Workflows Using Processes
	Default Process
	Overview of Processes
	Define New Process

	Example Process Models
	Add One Built-In Task and One Custom Task
	Specify a Task Execution Order
	Include Multiple Instances of a Task
	Specify Tools that Custom Task Can Launch

	Best Practices for Process Model Authoring
	Manage Process Model File
	Share Queries

	Troubleshoot Missing Tasks, Artifacts, and Dependencies
	Troubleshooting Missing Tasks or Artifacts
	Limitations on Incremental Build
	Other Limitations
	Analyze Project From Scratch

	Integrate into CI Systems
	Approaches to Running Processes in CI
	Before You Integrate
	GitHub
	GitLab
	Jenkins
	Other Platforms

	Integrate into GitHub
	Integrate into GitLab
	Connect Your Project and GitLab
	Perform One-Time Setup of GitLab Template
	Generated Pipeline in GitLab

	Integrate into Jenkins
	Integrate Using Default Options
	Customize Downstream Pipeline

	Integrate into Other CI Platforms
	Run MATLAB in Batch Mode
	Generate and Run Pipeline Using runprocess Function

	How Automatic Pipeline Generation Works
	Summary of Support
	Initial Setup
	Automatically Generated Pipelines
	Optional Pipeline Customization
	Parallel Pipeline Architectures

	Tips for Setting Up CI Agents
	Set Up Virtual Display Machines Without Displays
	Create Docker Container for Support Package
	Dry-Run Your Process

	Best Practices for Effective Builds
	Use Incremental Builds for Regular Submissions
	Run Full Builds for Qualifying Software
	Cache Models and Other Artifacts Used During Build

	Version History
	July 2024
	Features

	June 2024
	Features

	May 2024
	Features

	April 2024
	March 2024
	Features

	February 2024
	Features

	December 2023
	November 2023
	October 2023
	September 2023
	August 2023
	July 2023
	June 2023
	April 2023
	March 2023
	February 2023
	December 2022
	November 2022
	October 2022
	September 2022
	August 2022

