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In this presentation we will see..
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In Goal-Based Wealth Management the asset allocation aims at
achieving a specific objective
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A classic example of Goal-Based Wealth Management is
the retirement problem

o Initial Capital W o Periodic contribution 2 o Periodic contribution N - 1 o Target Capital G

| Start Investment Period | | . End Investment Period
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In the retirement problem the asset allocation of the portfolio
depends on the proximity to the retirement date

60% — 20%
Equity Equity

Target date*
Retirement B US. stocks
Young Transition Late
Q
100% ] M International stocks
80% B US nominal investment-
grade bonds
S 60% B Treasury Inflation-
= Protected Securities
3]
[}
Z 40% M Cash
* Target date is the year stated
20% in the fund name.
0%
45 25 a7
4—————————Years to target date p4—Years beyond target date —p

Source: Vanguard
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https://retirementplans.vanguard.com/VGApp/pe/pubeducation/investing/LTgoals/TargetRetirementFunds.jsf
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What is Reinforcement Learning?

Type of machine learning that trains an ‘agent’ / AGENT \
through trial & error interactions with an OBSERVATIONS ) ACTIONS
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What is Reinforcement Learning?

Type of machine learning that trains an ‘agent’
through trial & error interactions with an
environment

What we need to define:
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The actions at each rebalancing period are a finite set of
portfolio weights on the efficient frontier
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The observations from the environment are the
and the

Wealth Level Time Period
Continuous Variable Discrete Variable
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The reward functions provide a compensation for achieving a

goal or for following a path
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Deep Q-Network (DQN) agent based on the action and

observation spaces
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Name Type Activations Learnable Proper...
1 |input_1 Feature Input 2(C) = 1(B) -
2 featurss
2 [fe1 Fully Connected 38{C) = 1(B) Meights 3@ = 2
30 fully connacted layer Bias 3@ =1
3 |relu_body RelU 3e(C) = 1(E) -
ReLU
4 |fc_body Fully Connected 3@(C) = 1(B) Weights 32 = 3@
30 fully connected layer Bias 3@ =1
body_output RelU 3@8(C) = 1(B} -
ReLU
[ output Fully Connected 15{C} = 1(B) Weights 1
15 fully connected layer Bias 1

q

30 fully connected layer
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( 15 fully connected layer
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Reinforcement Learning Toolbox provides a rich set of Built-in agents

SARSA Agents

Policy Gradient (PG) Agents (PG)

Actor-Critic (AC) Agents (AC)

Trust Region Policy Optimization (TRPO) Agents (TRPO)

Proximal Policy Optimization (PPO) Agents (PPO)

Q-Learning Agents (Q)

Deep O-Network (DON) Agents

Deep Deterministic Policy Gradient (DDPG) Agents

Twin-Delayed Deep Deterministic (TD3) Policy Gradient
Agents (TD3)
Soft Actor-Critic (SAC) Agents (SAC)

Model-Based Policy Optimization (MBPQO) Agents (MBPO)

Value-Based
Policy-Based
Actor-Ciritic
Actor-Critic
Actor-Ciritic
Value-Based
Value-Based
Actor-Ciritic

Actor-Critic

Actor-Critic

Actor-Critic

Discrete

Discrete or continuous
Discrete or continuous
Discrete or continuous
Discrete or continuous
Discrete

Discrete

Continuous

Continuous

Continuous

Discrete or continuous
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— On-Policy Built-In Agents

— Off-Policy Built-In Agents
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https://www.mathworks.com/help/reinforcement-learning/ug/sarsa-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/pg-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/actor-critic-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/trpo-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/q-learning-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/dqn-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/td3-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/td3-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/sac-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/mbpo-agents.html

Any custom agent can be defined as a subclass of the

rl.agent.CustomAgent class

=

2. Define the appropriate Agent properties

3. Define a constructor function

4. Add a critic and an actor (if needed)

5. Define required agent methods

— getActionimpl
— getActionWithExplorationimpl
— learnimpl

Doc Example: Create Custom Reinforcement Learning Agents

Create a subclass from the class rl.agent.CustomAgent

methods

% Constructor
function obj = CustomGAgent(num_state, num_action,...

end

k, epsilon, obs_info, act_info, T, discount)

% Call the abstract class constructor
obj = obj@rl.agent.CustomAgent();

% Set the G and N matrices
obj.G = zeros(num_state, num_action);
obj.N = zeros(num_state, num_action);

obj.rho = ones(num_state, num_action) ./ num_action;

obj.actions = 1l:num_action;

obj.k = k;
obj.epsilon = epsilon;
obj.T = T;

obj.discount = discount;

% Define the observation and action spaces
obj.0ObservationInfo_ = obs_info;
obj.ActionInfo_ = act_info;
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classdef CustomGAgent < rl.agent.CustomAgent

properties

end

% G[state, action]

G = [0, @]

% N[state, action]

N = [e, @]

% actions

actions

% rho the prior policy
rho

% k: param for adjusting beta.
k

% total T steps

T

% epsilon for exploration
epsilon

% discount

discount
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https://www.mathworks.com/help/reinforcement-learning/ug/create-custom-agents.html
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The optimal strategy is to get more aggressive when the wealth is »ww me” -
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Reinforcement Learning relaxes model assumptions

Wmin l_'_ll_'_ll Y J T J T A T J\ Y J\ . JL ; J WmaX
WW, We W, Ws W, w, W W

Finite Wealth Level States

Known Transition Probabilities
pa(Wi I W) =P(W;(t+ 1) | W(¢), A

Cash flows must be known at the
beginning of the investment horizon
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MathWorks lowers the Reinforcement Learning barrier to entry
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https://www.mathworks.com/help/deeplearning/ref/analyzenetwork.html
https://matlabacademy.mathworks.com/details/reinforcement-learning-onramp/reinforcementlearning
https://www.mathworks.com/videos/series/reinforcement-learning.html
https://www.mathworks.com/content/dam/mathworks/ebook/gated/reinforcement-learning-ebook-all-chapters.pdf
https://www.mathworks.com/help/reinforcement-learning/ref/reinforcementlearningdesigner-app.html
https://www.mathworks.com/help/deeplearning/ref/deepnetworkdesigner-app.html
https://www.mathworks.com/help/deeplearning/ug/multi-period-goal-based-wealth-management-using-reinforcement-learning.html
https://www.mathworks.com/help/deeplearning/ug/multi-period-goal-based-wealth-management-using-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2023a/finance/deep-reinforcement-learning-for-optimal-trade-execution.html
https://www.mathworks.com/help/releases/R2021b/finance/hedging-option-using-reinforcement-learning.html
https://www.mathworks.com/help/releases/R2021b/finance/hedging-option-using-reinforcement-learning.html
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